Find the critical numbers:
\(\displaystyle h(t) = t^{3/4} - 3t^{1/4}\)
\(\displaystyle h'(t) = \dfrac{3}{4} u^{-1/4} - (\dfrac{1}{4}) 3 v^{-3/4}\)
\(\displaystyle h'(t) = \dfrac{3}{4} u^{-1/4} - \dfrac{3}{4} v^{-3/4}\)
\(\displaystyle h'(t) = \dfrac{3}{4} t^{-1/4} - \dfrac{3}{4} t^{-3/4}\)
\(\displaystyle h'(t) = \dfrac{3}{4} t^{-1/4} - \dfrac{3}{4} t^{-3/4}\) = 0
Next move. How can I solve for t in this situation?
\(\displaystyle h(t) = t^{3/4} - 3t^{1/4}\)
\(\displaystyle h'(t) = \dfrac{3}{4} u^{-1/4} - (\dfrac{1}{4}) 3 v^{-3/4}\)
\(\displaystyle h'(t) = \dfrac{3}{4} u^{-1/4} - \dfrac{3}{4} v^{-3/4}\)
\(\displaystyle h'(t) = \dfrac{3}{4} t^{-1/4} - \dfrac{3}{4} t^{-3/4}\)
\(\displaystyle h'(t) = \dfrac{3}{4} t^{-1/4} - \dfrac{3}{4} t^{-3/4}\) = 0
Last edited: