\(\displaystyle \int_{1}^{9} \dfrac{x}{\sqrt{1 + 2x}} dx\)
\(\displaystyle \int_{1}^{9} \dfrac{x}{(1 + x)^{1/2}}dx\)
\(\displaystyle \int_{1}^{9} x(1 + x)^{-1/2} dx\)
\(\displaystyle \int_{1}^{9} x(u)^{-1/2} dx\)
\(\displaystyle u = 1 + 2x\)
\(\displaystyle du = 2 dx\) - cannot use fraction multiplication to manipulate this.
So
\(\displaystyle u = 1 + 2x\)
\(\displaystyle u - 1 = 2x\) - solve for x
\(\displaystyle \dfrac{u}{2} - \dfrac{1}{2} = x\) How to finish algebra on this?
\(\displaystyle \int_{1}^{9} \dfrac{x}{(1 + x)^{1/2}}dx\)
\(\displaystyle \int_{1}^{9} x(1 + x)^{-1/2} dx\)
\(\displaystyle \int_{1}^{9} x(u)^{-1/2} dx\)
\(\displaystyle u = 1 + 2x\)
\(\displaystyle du = 2 dx\) - cannot use fraction multiplication to manipulate this.
So
\(\displaystyle u = 1 + 2x\)
\(\displaystyle u - 1 = 2x\) - solve for x
\(\displaystyle \dfrac{u}{2} - \dfrac{1}{2} = x\) How to finish algebra on this?
Last edited: