C cmnalo Junior Member Joined Nov 5, 2006 Messages 61 Dec 6, 2006 #1 ∫ lnx/5x dx interval (2,4) u=lnx du= d/dx(lnx)dx=(1/x)dx 1/5∫ u/xdx (1/5)(1/2)(u^2) 1/10(lnx^2) 1/10[ln(4)^2] - 1/10[ln(2)^2] = Where I'm I going wrong? How do I arrive at 3/10? Answer is: 3/10(ln2)^2
∫ lnx/5x dx interval (2,4) u=lnx du= d/dx(lnx)dx=(1/x)dx 1/5∫ u/xdx (1/5)(1/2)(u^2) 1/10(lnx^2) 1/10[ln(4)^2] - 1/10[ln(2)^2] = Where I'm I going wrong? How do I arrive at 3/10? Answer is: 3/10(ln2)^2
skeeter Elite Member Joined Dec 15, 2005 Messages 3,204 Dec 6, 2006 #2 \(\displaystyle \L \int_2^4 \frac{\ln{x}}{5x} dx = \frac{1}{5} \int_2^4 \frac{\ln{x}}{x} dx\) \(\displaystyle \L u = \ln{x}\) \(\displaystyle \L du = \frac{1}{x} dx\) substitute and reset limits ... \(\displaystyle \L \frac{1}{5} \int_{\ln{2}}^{\ln{4}} u du\) \(\displaystyle \L \frac{1}{5} \left[\frac{u^2}{2}\right]_{\ln{2}}^{\ln{4}}\) note ... \(\displaystyle \L \ln{4} = 2\ln{2}\) \(\displaystyle \L \frac{1}{5} \left[\frac{4\ln^2{2}}{2} - \frac{\ln^2{2}}{2}\right]\) \(\displaystyle \L \frac{3\ln^2{2}}{10}\)
\(\displaystyle \L \int_2^4 \frac{\ln{x}}{5x} dx = \frac{1}{5} \int_2^4 \frac{\ln{x}}{x} dx\) \(\displaystyle \L u = \ln{x}\) \(\displaystyle \L du = \frac{1}{x} dx\) substitute and reset limits ... \(\displaystyle \L \frac{1}{5} \int_{\ln{2}}^{\ln{4}} u du\) \(\displaystyle \L \frac{1}{5} \left[\frac{u^2}{2}\right]_{\ln{2}}^{\ln{4}}\) note ... \(\displaystyle \L \ln{4} = 2\ln{2}\) \(\displaystyle \L \frac{1}{5} \left[\frac{4\ln^2{2}}{2} - \frac{\ln^2{2}}{2}\right]\) \(\displaystyle \L \frac{3\ln^2{2}}{10}\)
C cmnalo Junior Member Joined Nov 5, 2006 Messages 61 Dec 6, 2006 #3 Skeeter- If ln4 = 2ln2. How do you get to 4ln2^2?
skeeter Elite Member Joined Dec 15, 2005 Messages 3,204 Dec 6, 2006 #4 cmnalo said: Skeeter- If ln4 = 2ln2. How do you get to 4ln2^2? Click to expand... using the FTC, you substitute ln4 for u into u<sup>2</sup>/2 ... \(\displaystyle \L \frac{\ln^2{4}}{2} = \frac{(2\ln{2})^2}{2} = \frac{4\ln^2{2}}{2}\)
cmnalo said: Skeeter- If ln4 = 2ln2. How do you get to 4ln2^2? Click to expand... using the FTC, you substitute ln4 for u into u<sup>2</sup>/2 ... \(\displaystyle \L \frac{\ln^2{4}}{2} = \frac{(2\ln{2})^2}{2} = \frac{4\ln^2{2}}{2}\)