Definite Integral Problem

Jason76

Senior Member
Joined
Oct 19, 2012
Messages
1,180
013+14x445x9dx\displaystyle \int^{1}_{0} 3 + \dfrac{1}{4}x^{4} - \dfrac{4}{5}x^{9} dx

3x+(14)x55(45)x1010\displaystyle \rightarrow 3x + (\dfrac{1}{4}) \dfrac{x^{5}}{5} - (\dfrac{4}{5})\dfrac{x^{10}}{10}

3x+x5204x1050\displaystyle \rightarrow 3x + \dfrac{x^{5}}{20} - \dfrac{4x^{10}}{50}
 
Last edited:
013+14x445x9dx\displaystyle \int^{1}_{0} 3 + \dfrac{1}{4}x^{4} - \dfrac{4}{5}x^{9} dx

3x+(14)x55(45)x1010\displaystyle \rightarrow 3x + (\dfrac{1}{4})\dfrac{x^{5}}{5} - (\dfrac{4}{5})\dfrac{x^{10}}{10}

3x+(14)x5204x1050\displaystyle \rightarrow 3x + (\dfrac{1}{4})\dfrac{x^{5}}{20} - \dfrac{4x^{10}}{50}
(3x+(14)x554x1050)01\displaystyle \displaystyle \left.\left(3x + (\dfrac{1}{4})\dfrac{x^{5}}{5} - \dfrac{4x^{10}}{50}\right) \right|_0^1

Evaluate at x=1 and at x=0, and subtract.
 
Top