Hello. I'm stuck with a differential problem. I checked my work over and over but I don't get the same answer as the textbook.
My answer: -141; the textbook's: -5.64 .Can someone please tell me what I'm doing wrong?
S = (2n^2 - 3n + 8)/(2 - 3n^4)
dS/dn = [(2n - 3n^4)((6n^2) -3) - (2n^3 - 3n + 8)(2 -12n^3)]/(2n- 3n^4)^2
= [ 12n^3 - 6n - 18n^6 + 9n^4 -( 4n^3 - 24n^6 - 6n + 36n^4 + 16 - 96n^3)]/ (2n - 3n^4)^2
= ( 12n^4 - 6n - 18n^6 + 9n^4 - 4n^3 + 24n^6 + 6n - 36n^4 - 16 + 96n^3)/ (2n - 3n^4)^2
= (6n^6 - 27n^4 + 104n^3 - 16)/(2n - 3n^4)^2
If x = -1, then dS/dn = (6 - 27 - 104 - 16)/ ( -2 + 3)^2
= -141 / 1 = -141
My answer: -141; the textbook's: -5.64 .Can someone please tell me what I'm doing wrong?
S = (2n^2 - 3n + 8)/(2 - 3n^4)
dS/dn = [(2n - 3n^4)((6n^2) -3) - (2n^3 - 3n + 8)(2 -12n^3)]/(2n- 3n^4)^2
= [ 12n^3 - 6n - 18n^6 + 9n^4 -( 4n^3 - 24n^6 - 6n + 36n^4 + 16 - 96n^3)]/ (2n - 3n^4)^2
= ( 12n^4 - 6n - 18n^6 + 9n^4 - 4n^3 + 24n^6 + 6n - 36n^4 - 16 + 96n^3)/ (2n - 3n^4)^2
= (6n^6 - 27n^4 + 104n^3 - 16)/(2n - 3n^4)^2
If x = -1, then dS/dn = (6 - 27 - 104 - 16)/ ( -2 + 3)^2
= -141 / 1 = -141