My way:
\(\displaystyle f(x) \ = \ y \ = \ [cos(x)]^{xln|x|}, \ ln|y| \ = \ xln|x|ln|cos(x)|.\)
\(\displaystyle Ergo, \ y \ = \ e^{xln|x|ln|cos(x)|}\)
\(\displaystyle Then \ y \ ' \ = \ \bigg[(1)ln|x|ln|cos(x)|+x(1/x)ln|cos(x)|+xln|x|\bigg[\frac{-sin(x)}{cos(x)}\bigg]\bigg][cos(x)]^{xln|x|}, \ e^{xln|x|ln|cos(x)| \ =\)\(\displaystyle \ [cos(x)]^{xln|x|}\)
\(\displaystyle Hence \ y \ ' \ = \ [ln|x|ln|cos(x)|+ln|cos(x)|-xln|x|tan(x)][cos(x)]^{xln|x|}.\)