Product Rule:
Given: \(\displaystyle f(x) g(x)\)
\(\displaystyle g(x)[f'(x)] + f(x)[g'(x)]\)
\(\displaystyle f(x) = 7\sqrt{x} \sin(x)\)
\(\displaystyle f(x) = 7 x^{1/2} \sin(x)\)
\(\displaystyle f'(x) = \sin(x) [\dfrac{d}{dx} 7 x^{1/2}] + 7x^{1/2} [\dfrac{d}{dx} \sin(x)]\)
\(\displaystyle f'(x) = \sin(x) \dfrac{7}{2}x^{-1/2} + 7x^{1/2} \cos(x)\)
Given: \(\displaystyle f(x) g(x)\)
\(\displaystyle g(x)[f'(x)] + f(x)[g'(x)]\)
\(\displaystyle f(x) = 7\sqrt{x} \sin(x)\)
\(\displaystyle f(x) = 7 x^{1/2} \sin(x)\)
\(\displaystyle f'(x) = \sin(x) [\dfrac{d}{dx} 7 x^{1/2}] + 7x^{1/2} [\dfrac{d}{dx} \sin(x)]\)
\(\displaystyle f'(x) = \sin(x) \dfrac{7}{2}x^{-1/2} + 7x^{1/2} \cos(x)\)
Last edited: