E Estjohn79 New member Joined Feb 20, 2015 Messages 1 Feb 20, 2015 #1 If h(2)=7 and h'(2)=-2 find f'(2) if f(x)=(h(x))/x.
pka Elite Member Joined Jan 29, 2005 Messages 11,978 Feb 20, 2015 #2 Estjohn79 said: If h(2)=7 and h'(2)=-2 find f'(2) if f(x)=(h(x))/x. Click to expand... If f(x)=(h(x))/x then \(\displaystyle f'(x)=\dfrac{x\cdot h'(x)-h(x)}{x^2}\) .
Estjohn79 said: If h(2)=7 and h'(2)=-2 find f'(2) if f(x)=(h(x))/x. Click to expand... If f(x)=(h(x))/x then \(\displaystyle f'(x)=\dfrac{x\cdot h'(x)-h(x)}{x^2}\) .
stapel Super Moderator Staff member Joined Feb 4, 2004 Messages 16,550 Feb 20, 2015 #3 Estjohn79 said: If h(2)=7 and h'(2)=-2 find f'(2) if f(x)=(h(x))/x. Click to expand... To expand a smidge upon the previous reply, to find the derivative of f(x) = h(x)/x, apply the Quotient Rule: . . . . .\(\displaystyle f'(x)\, =\, \dfrac{\frac{dh(x)}{dx}\cdot x\, -\, h(x)\cdot \frac{dx}{dx}}{(x)^2}\, =\, \dfrac{x\,h'(x)\, -\, h(x)}{x^2}\) Then evaluate by plugging in the given values.
Estjohn79 said: If h(2)=7 and h'(2)=-2 find f'(2) if f(x)=(h(x))/x. Click to expand... To expand a smidge upon the previous reply, to find the derivative of f(x) = h(x)/x, apply the Quotient Rule: . . . . .\(\displaystyle f'(x)\, =\, \dfrac{\frac{dh(x)}{dx}\cdot x\, -\, h(x)\cdot \frac{dx}{dx}}{(x)^2}\, =\, \dfrac{x\,h'(x)\, -\, h(x)}{x^2}\) Then evaluate by plugging in the given values.