dirac delta function - 2

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,287
Solve the differential equation the hard way by Dirac delta function to obtain Green's function.

d2ydx2+k2y=f(x)\displaystyle \frac{d^2y}{dx^2} + k^2y = f(x)

a<x<b\displaystyle a < x < b
 
🖤

g(x,s)={Acoskx+Bsinkxas<xCcoskx+Dsinkxx<sb\large g(x,s) =\begin{cases} A\cos kx + B\sin kx & a \leq s < x\\[2ex] C\cos kx + D\sin kx & x < s \leq b\end{cases}
 
g(x,s)={Acoskx+Bsinkxas<xCcoskx+Dsinkxx<sb\large g(x,s) =\begin{cases} A\cos kx + B\sin kx & a \leq s < x\\[2ex] C\cos kx + D\sin kx & x < s \leq b\end{cases}
This should be written as:

g(x,s)={Acosks+Bsinksas<xCcosks+Dsinksx<sb\large g(x,s) =\begin{cases} A\cos ks + B\sin ks & a \leq s < x\\[2ex] C\cos ks + D\sin ks & x < s \leq b\end{cases}
 
g(x,s)={Acosks+Bsinksas<xCcosks+Dsinksx<sb\large g(x,s) =\begin{cases} A\cos ks + B\sin ks & a \leq s < x\\[2ex] C\cos ks + D\sin ks & x < s \leq b\end{cases}
As I said before, A,B,C,and D\displaystyle A, B, C, \text{and} \ D are not constants, but rather functions of x\displaystyle x. And the goal is find them to get Green's function.

Four unknowns need 4\displaystyle 4 equations. We can get two of them from boundary conditions and two from continuity conditions. That is FOUR.

Acoska+Bsinka=0\displaystyle A\cos ka + B\sin ka = 0
Ccoskb+Dsinkb=0\displaystyle C\cos kb + D\sin kb = 0
Acoskx+BsinkxCcoskxDsinkx=0\displaystyle A\cos kx + B\sin kx - C\cos kx - D\sin kx = 0
kCsinkx+kDcoskx+kAsinkxkBcoskx=1\displaystyle -kC\sin kx + kD\cos kx + kA\sin kx - kB\cos kx = 1
 
We will use a calculator to solve this system. This calculator does not accept functions so we will replace them with letters.

F=coska\displaystyle F = \cos ka
G=sinka\displaystyle G = \sin ka
H=coskb\displaystyle H = \cos kb
L=sinkb\displaystyle L = \sin kb
Y=coskx\displaystyle Y = \cos kx
Z=sinkx\displaystyle Z = \sin kx
 
If I solve this systems of equations, I get:

A=sinkasink(bx)ksink(ba)\displaystyle A = \frac{\sin ka\sin k(b-x)}{k\sin k(b - a)}

B=coskasink(bx)ksink(ba)\displaystyle B = -\frac{\cos ka\sin k(b-x)}{k\sin k(b - a)}

C=sinkbsink(xa)ksink(ba)\displaystyle C = -\frac{\sin kb\sin k(x-a)}{k\sin k(b - a)}

D=coskbsink(xa)ksink(ba)\displaystyle D = \frac{\cos kb\sin k(x-a)}{k\sin k(b - a)}
 
Our Green function so far:


g(x,s)={(sinkasink(bx)ksink(ba))cosks+(coskasink(bx)ksink(ba))sinksas<x(sinkbsink(xa)ksink(ba))cosks+(coskbsink(xa)ksink(ba))sinksx<sb \Large g(x,s) =\begin{cases} \left(\frac{\sin ka\sin k(b-x)}{k\sin k(b - a)}\right)\cos ks + \left(-\frac{\cos ka\sin k(b-x)}{k\sin k(b - a)}\right)\sin ks & a \leq s < x\\[3ex] \left(-\frac{\sin kb\sin k(x-a)}{k\sin k(b - a)}\right)\cos ks + \left(\frac{\cos kb\sin k(x-a)}{k\sin k(b - a)}\right)\sin ks & x < s \leq b \end{cases}
 
With a little simplification, we get:


g(x,s)={(sink(bx)ksink(ba))(sinkacoskscoskasinks)as<x(sink(xa)ksink(ba))(sinkbcosks+coskbsinks)x<sb \Large g(x,s) =\begin{cases} \left(\frac{\sin k(b-x)}{k\sin k(b - a)}\right)(\sin ka\cos ks - \cos ka \sin ks) & a \leq s < x\\[3ex] \left(\frac{\sin k(x-a)}{k\sin k(b - a)}\right)(-\sin kb\cos ks + \cos kb\sin ks) & x < s \leq b \end{cases}
 
g(x,s)={(sink(bx)ksink(ba))(sinkacoskscoskasinks)as<x(sink(xa)ksink(ba))(sinkbcosks+coskbsinks)x<sb \Large g(x,s) =\begin{cases} \left(\frac{\sin k(b-x)}{k\sin k(b - a)}\right)(\sin ka\cos ks - \cos ka \sin ks) & a \leq s < x\\[3ex] \left(\frac{\sin k(x-a)}{k\sin k(b - a)}\right)(-\sin kb\cos ks + \cos kb\sin ks) & x < s \leq b \end{cases}
We simplify the expression above to get:

g(x,s)={(sink(bx)ksink(ba))sink(as)as<x(sink(xa)ksink(ba))sink(sb)x<sb \Large g(x,s) =\begin{cases} \left(\frac{\sin k(b-x)}{k\sin k(b - a)}\right)\sin k(a - s) & a \leq s < x\\[3ex] \left(\frac{\sin k(x-a)}{k\sin k(b - a)}\right)\sin k(s - b) & x < s \leq b \end{cases}


Or


g(x,s)={sink(sa)sink(bx)ksink(ba)as<xsink(xa)sink(bs)ksink(ba)x<sb \Large g(x,s) =\begin{cases} -\frac{\sin k(s - a)\sin k(b-x)}{k\sin k(b - a)} & a \leq s < x\\[3ex] -\frac{\sin k(x-a)\sin k(b - s)}{k\sin k(b - a)} & x < s \leq b \end{cases}

Which matches the result of this post:


Which means we have found the Green's function successfully the hard way!

💪🗿🗿
 
Top