dirac delta function

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,776
Solve the differential equation by Dirac delta function to obtain Green's function.

d2ydx2+k2y=f(x)\displaystyle \frac{d^2y}{dx^2} + k^2y = f(x)

a<x<b\displaystyle a < x < b
 
💚

g(x,s)={sink(xa)as<xsink(bx)x<sb\large g(x,s) =\begin{cases} \sin k(x - a) & a \leq s < x\\[2ex] \sin k(b - x) & x < s \leq b\end{cases}
 
g(x,s)={sink(xa)as<xsink(bx)x<sb\large g(x,s) =\begin{cases} \sin k(x - a) & a \leq s < x\\[2ex] \sin k(b - x) & x < s \leq b\end{cases}
This should be written as:

g(x,s)={Asink(sa)as<xBsink(bs)x<sb\large g(x,s) =\begin{cases} A\sin k(s - a) & a \leq s < x\\[2ex] B\sin k(b - s) & x < s \leq b\end{cases}
 
Last edited:
g(x,s)={Asink(sa)as<xBsink(bs)x<sb\large g(x,s) =\begin{cases} A\sin k(s - a) & a \leq s < x\\[2ex] B\sin k(b - s) & x < s \leq b\end{cases}
A\displaystyle A and B\displaystyle B in this system are in fact not constants. They are functions of x\displaystyle x. Therefore, they should be written as A(x)\displaystyle A(x) and B(x)\displaystyle B(x). I wrote them without the variable x\displaystyle x, just to save some ink and also the system looks more clean like this!

The goal is to find these two functions, A\displaystyle A and B\displaystyle B. We will use the two properties of continuity, those are:

g(x)g(x+)=0\displaystyle g(x^-) - g(x^+) = 0
g(x+)g(x)=1\displaystyle g'(x^+) - g'(x^-) = 1

Let us apply the properties.

Asink(xa)Bsink(bx)=0\displaystyle A\sin k(x - a) - B\sin k(b - x) = 0
kBcosk(bx)kAcosk(xa)=1\displaystyle -kB\cos k(b - x) - kA\cos k(x - a) = 1
 
Asink(xa)Bsink(bx)=0\displaystyle A\sin k(x - a) - B\sin k(b - x) = 0
kBcosk(bx)kAcosk(xa)=1\displaystyle -kB\cos k(b - x) - kA\cos k(x - a) = 1
Let us solve for A\displaystyle A in the first equation.

A=Bsink(bx)sink(xa)\displaystyle A = \frac{B\sin k(b - x)}{\sin k(x - a)}
 
A=Bsink(bx)sink(xa)\displaystyle A = \frac{B\sin k(b - x)}{\sin k(x - a)}
Substitute this result in the second equation.

kBcosk(bx)k(Bsink(bx)sink(xa))cosk(xa)=1\displaystyle -kB\cos k(b - x) - k\left(\frac{B\sin k(b - x)}{\sin k(x - a)}\right)\cos k(x - a) = 1

Solve for B\displaystyle B.

kBcosk(bx)sink(xa)kBsink(bx)cosk(xa)=sink(xa)\displaystyle -kB\cos k(b - x)\sin k(x - a) - kB\sin k(b - x)\cos k(x - a) = \sin k(x - a)


B[kcosk(bx)sink(xa)+ksink(bx)cosk(xa)]=sink(xa)\displaystyle B\bigg[k\cos k(b - x)\sin k(x - a) + k\sin k(b - x)\cos k(x - a)\bigg] = -\sin k(x - a)


B=sink(xa)kcosk(bx)sink(xa)+ksink(bx)cosk(xa)\displaystyle B = -\frac{\sin k(x - a)}{k\cos k(b - x)\sin k(x - a) + k\sin k(b - x)\cos k(x - a)}

We will use this identity.

sinAcosB+sinBcosA=sin(A+B)\displaystyle \sin A \cos B + \sin B \cos A = \sin(A + B)

Then,

B=sink(xa)ksink(ba)\displaystyle B = -\frac{\sin k(x - a)}{k\sin k(b - a)}

And

A=[sink(xa)ksink(ba)]sink(bx)sink(xa)\displaystyle A = \bigg[-\frac{\sin k(x - a)}{k\sin k(b - a)}\bigg]\frac{\sin k(b - x)}{\sin k(x - a)}

Or

A=sink(bx)ksink(ba)\displaystyle A = -\frac{\sin k(b - x)}{k\sin k(b - a)}
 
g(x,s)={Asink(sa)as<xBsink(bs)x<sb\large g(x,s) =\begin{cases} A\sin k(s - a) & a \leq s < x\\[2ex] B\sin k(b - s) & x < s \leq b\end{cases}
Substitute A\displaystyle A and B\displaystyle B in the function above.

g(x,s)={(sink(bx)ksink(ba))sink(sa)as<x(sink(xa)ksink(ba))sink(bs)x<sb\large g(x,s) =\begin{cases} \left(-\frac{\sin k(b - x)}{k\sin k(b - a)}\right)\sin k(s - a) & a \leq s < x\\[2ex] \left(-\frac{\sin k(x - a)}{k\sin k(b - a)}\right)\sin k(b - s) & x < s \leq b\end{cases}
 
g(x,s)={(sink(bx)ksink(ba))sink(sa)as<x(sink(xa)ksink(ba))sink(bs)x<sb\large g(x,s) =\begin{cases} \left(-\frac{\sin k(b - x)}{k\sin k(b - a)}\right)\sin k(s - a) & a \leq s < x\\[2ex] \left(-\frac{\sin k(x - a)}{k\sin k(b - a)}\right)\sin k(b - s) & x < s \leq b\end{cases}
Simplify.

g(x,s)={sink(sa)sink(bx)ksink(ba)as<xsink(xa)sink(bs)ksink(ba)x<sb\large g(x,s) =\begin{cases} -\frac{\sin k(s - a)\sin k(b - x)}{k\sin k(b - a)} & a \leq s < x\\[2ex] -\frac{\sin k(x - a)\sin k(b - s)}{k\sin k(b - a)} & x < s \leq b\end{cases}

And this was the fourth\displaystyle \color{pink} \bold{fourth} Green's function. We learnt to find Green's function in 4\displaystyle 4 different ways. We also learnt how to use it to solve a differential equation. If you completely followed the four ways I made, you would be able to build a solid foundation in the very deep topic of Green functions!\displaystyle \color{green} \bold{Green \ functions!}
 
Top