Discrete mathematics: first order (predicate) logic

salvatorekate95

New member
Joined
Sep 20, 2014
Messages
9
Translate into English the following first-order formulae and determine which of them represent true propositions when interpreted in R:

\(\displaystyle \mbox{1) }\, \forall x\, (x\, =\, x^2\, \rightarrow\, x\, <\, 0)\)

\(\displaystyle \mbox{2) }\, \forall x\, (x\, >\, 0\, \rightarrow\, x^2\, >\, x)\)

\(\displaystyle \mbox{3) }\, \forall x\, \left(x\, =\, 0\, \lor\, \lnot(x\, +\, x\, =\, x)\right)\)

\(\displaystyle \mbox{4) }\, \exists x \forall y\, (x\, > y)\)

\(\displaystyle \mbox{5) }\, \forall x\, \forall y\, \left(x\, >\, y\, \rightarrow\, \exists z\, (x\, >\, z\, \land\, z\, >\, y)\right)\)
 
Last edited by a moderator:
Translate into English the following first-order formulae and determine which of them represent true propositions when interpreted in R:

\(\displaystyle \mbox{1) }\, \forall x\, (x\, =\, x^2\, \rightarrow\, x\, <\, 0)\)

\(\displaystyle \mbox{2) }\, \forall x\, (x\, >\, 0\, \rightarrow\, x^2\, >\, x)\)

\(\displaystyle \mbox{3) }\, \forall x\, \left(x\, =\, 0\, \lor\, \lnot(x\, +\, x\, =\, x)\right)\)

\(\displaystyle \mbox{4) }\, \exists x \forall y\, (x\, > y)\)

\(\displaystyle \mbox{5) }\, \forall x\, \forall y\, \left(x\, >\, y\, \rightarrow\, \exists z\, (x\, >\, z\, \land\, z\, >\, y)\right)\)
You seem to have the wrong idea. This is not a homework service. Post your work so we can help.

Here is #4. Some number is greater than every number.
 
Last edited:
No, that is what #4 says. #5 says "given any two numbers there exist a third number between them."
 
1. False. Example: x=1, 1^2=1 and 1>0
2. True. 2^2=4 and 4>2
3. I don't know what it says.
4. I think that it is false but I can't explain it.
5. True?
 
4. I think that it is false but I can't explain it.
5. True?
4. Is there a number that is greater that every number?

5. Suppose x<y\displaystyle x<y then
\(\displaystyle \begin{align*} \dfrac{x}{2}&<\dfrac{y}{2}….(1)\text{divide by two}\\\dfrac{x+y}{2}&<y….(2)\text{add y/2 to (1)} \\x&<\dfrac{x+y}{2}….(3)\text{add x/2 to (1)} \\x&<\dfrac{x+y}{2}<y….(4)\text{combine 2 & 3 }\end{align*}\)
 
1. False. Example: x=1, 1^2=1 and 1>0
2. True. 2^2=4 and 4>2
3. I don't know what it says.
4. I think that it is false but I can't explain it.
5. True?

You need to learn the notation
 x is ’there exists an x’\displaystyle \exists\text { x is 'there exists an x'}
x is ’for all x’\displaystyle \forall x\text { is 'for all x'}
∧ is the logical 'and'
∨ is the logical 'or'
¬ is the logical 'not'
> is the ’greater than’ sign\displaystyle >\text{ is the 'greater than' sign}
and so forth.

1. o.k.
2. What about 12\displaystyle \frac{1}{2}
3. see below
4. consider y + 1
5. consider x+y2\displaystyle \frac{x+y}{2}

[FONT=MathJax_Main]3) [/FONT][FONT=MathJax_Main]∀[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0[/FONT][FONT=MathJax_Main]∨[/FONT][FONT=MathJax_Main]¬[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main])[/FONT]
[FONT=MathJax_Main]∀[/FONT][FONT=MathJax_Math]x For all x[/FONT][FONT=MathJax_Main]
[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0 either x is 0
[/FONT][FONT=MathJax_Main]∨ or
[/FONT][FONT=MathJax_Main]¬[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main])[/FONT] it is not the case that x+x is equal to x
 
4. Is there a number that is greater that every number?

5. Suppose x<y\displaystyle x<y then
\(\displaystyle \begin{align*} \dfrac{x}{2}&<\dfrac{y}{2}….(1)\text{divide by two}\\\dfrac{x+y}{2}&<y….(2)\text{add y/2 to (1)} \\x&<\dfrac{x+y}{2}….(3)\text{add x/2 to (1)} \\x&<\dfrac{x+y}{2}<y….(4)\text{combine 2 & 3 }\end{align*}\)


4). In that case, 4 is false. There is not a real number that is greater than every number.

5). So it is true.
Example:
x=1 y=2
(1+2)2=1.5
1<1.5<2
 
You need to learn the notation
 x is ’there exists an x’\displaystyle \exists\text { x is 'there exists an x'}
x is ’for all x’\displaystyle \forall x\text { is 'for all x'}
∧ is the logical 'and'
∨ is the logical 'or'
¬ is the logical 'not'
> is the ’greater than’ sign\displaystyle >\text{ is the 'greater than' sign}
and so forth.

1. o.k.
2. What about 12\displaystyle \frac{1}{2}
3. see below
4. consider y + 1
5. consider x+y2\displaystyle \frac{x+y}{2}

[FONT=MathJax_Main]3) [/FONT][FONT=MathJax_Main]∀[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0[/FONT][FONT=MathJax_Main]∨[/FONT][FONT=MathJax_Main]¬[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main])[/FONT]
[FONT=MathJax_Main]∀[/FONT][FONT=MathJax_Math]x For all x[/FONT][FONT=MathJax_Main]
[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0 either x is 0
[/FONT][FONT=MathJax_Main]∨ or
[/FONT][FONT=MathJax_Main]¬[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main])[/FONT] it is not the case that x+x is equal to x



2. If x=1/2, then it is false. 0.5>0.25


3. if x=1 then [FONT=MathJax_Main]¬[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]) [/FONT]true.
if x=0 then 0+0=0. In that case 3 must be false?
 
Last edited:
4). In that case, 4 is false. There is not a real number that is greater than every number.

5). So it is true.
Example:
x=1 y=2
(1+2)2=1.5
1<1.5<2

4) xy(x>y)\displaystyle \exists x \forall y\, (x\, > y)
Given any real number y, is x = y+1 greater than y?

5) True, that is an example. However giving an example (or a 1000 examples) of something doesn't prove it is true for everything. Fortunately, giving an example where it is false does prove that it is not true for everything.

 

4) xy(x>y)\displaystyle \exists x \forall y\, (x\, > y)
Given any real number y, is x = y+1 greater than y?

5) True, that is an example. However giving an example (or a 1000 examples) of something doesn't prove it is true for everything. Fortunately, giving an example where it is false does prove that it is not true for everything.




4) If x=y+1, so x is greater than y. And then 4 is true.

But 5 is true, right?
 
4) If x=y+1, so x is greater than y. And then 4 is true.

But 5 is true, right?
5 is true but you didn't prove it with just the example. You need to do something like the following
x < y => x + y < 2 y => (x+y)/2 < y
and similarly for the other side
x < y => 2 x < x + y => x < (x+y)/2
 
Last edited:
Yes, 5 is true but can you say why it is true? Can you give a proof. A "counter-example", a single example in which a statement if false is sufficient to prove that it is not always true. But a single example will not prove it is always true!

If x> y, can you write a formula for z, depending only on x and y? That would prove that such a z always exists.
 
Top