distinct real zeros

thegersters

New member
Joined
Sep 26, 2005
Messages
18
Which of the following functions has exactly 4 distinct real zeros?

f(x) = x^6 - 1
g(x) = x^3 - x^2 + x - 1
h(x) = x^3 - 2x^2 - x + 2 Would this be it????
p(x) = x^4 - 3x^2 + 2
p(x) = x^4 + 3x^2 + 2
none of these
 
Hello, thegersters!

Sorry, you picked the wrong one . . .

Which of the following functions has exactly 4 distinct real zeros?

f(x)=x61      g(x)=x3x2+x1      h(x)=x32x2x+2\displaystyle f(x)\:=\:x^6\,-\,1\;\;\;g(x)\:=\:x^3\,-\,x^2\,+\,x\,-\,1\;\;\;h(x)\:=\:x^3\,-\,2x^2\,-\,x\,+\,2
p(x)=x43x2+2      q(x)=x4+3x2+2      none of these\displaystyle p(x)\:=\:x^4\,-\,3x^2\,+\,2\;\;\;q(x)\:=\:x^4\,+\,3x^2\,+\,2\;\;\;\text{none of these}
We will factor all of them . . .

\(\displaystyle f(x)\:=\:x^6\,-\,1\:=\:(x^3\,-\,1)(x^3\,+\,1) \;=\;(x\,-\,1)(x^2\,+\,x\,+\,1)(x\,+\,1)(x^2\,-\,x\,+\,1)\)
. . . Two real zeros: .x=1,1\displaystyle x\,=\,1,\,-1

\(\displaystyle g(x)\:=\:x^3\,-\,x^2\,+\,x\,-\,1\:=\:x^2(x\,-\,1) + (x\,-\,1)\:=\:(x\,-\,1)(x^2\,+\,1)\)
. . . One real zeros: .x=1\displaystyle x\,=\,1

\(\displaystyle h(x)\:=\:x^3\,-\,2x^2\,-\,x\,+\,2\:=\:x^2(x\,-\,2) - (x\,-\,2)\:=\:(x\,-\,2)(x^2\,-\,1)\:=\:(x\,-\,2)(x\,-\,1)(x\,+\,1)\)
. . . Three real zeros: .x=2,1,1\displaystyle x\,=\,2,\,1,\,-1

\(\displaystyle p(x)\:=\:x^4\,-\,3x^2\,+\,2\:=\:(x^2\,-\,1)(x^2\,-\,2)\:=\:(x\,-\,1)(x\,+\,1)(x\,-\,\sqrt{2})(x\,+\,\sqrt{2})\)
. . . Four real zeros: .x=1,1,2,2\displaystyle x\,=\,1,\,-1,\,\sqrt{2},\,-\sqrt{2} . <-- This one!

\(\displaystyle q(x)\:=\:x^4\,+\,3x^2\,+\,2\:=\:(x^2\,+\,1)(x^2\,+\,2)\)
. . . No real zeros.
 
Top