\(\displaystyle f(x)\:=\:x^6\,-\,1\:=\x^3\,-\,1)(x^3\,+\,1) \;=\;(x\,-\,1)(x^2\,+\,x\,+\,1)(x\,+\,1)(x^2\,-\,x\,+\,1)\) . . . Two real zeros: .x=1,−1
\(\displaystyle g(x)\:=\:x^3\,-\,x^2\,+\,x\,-\,1\:=\:x^2(x\,-\,1) + (x\,-\,1)\:=\x\,-\,1)(x^2\,+\,1)\) . . . One real zeros: .x=1
\(\displaystyle h(x)\:=\:x^3\,-\,2x^2\,-\,x\,+\,2\:=\:x^2(x\,-\,2) - (x\,-\,2)\:=\x\,-\,2)(x^2\,-\,1)\:=\x\,-\,2)(x\,-\,1)(x\,+\,1)\) . . . Three real zeros: .x=2,1,−1
\(\displaystyle p(x)\:=\:x^4\,-\,3x^2\,+\,2\:=\x^2\,-\,1)(x^2\,-\,2)\:=\x\,-\,1)(x\,+\,1)(x\,-\,\sqrt{2})(x\,+\,\sqrt{2})\) . . . Four real zeros: .x=1,−1,2,−2 . <-- This one!
\(\displaystyle q(x)\:=\:x^4\,+\,3x^2\,+\,2\:=\x^2\,+\,1)(x^2\,+\,2)\) . . . No real zeros.
This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
By continuing to use this site, you are consenting to our use of cookies.