Then we have: \(\displaystyle \L\,\sqrt[3]{27\,\cdot\,2\,\cdot\,x^{18}\,\cdot\,x} \;= \;\sqrt[3]{27}\,\cdot\,\sqrt[3]{2}\,\cdot\,\sqrt[3]{x^{18}}\,\cdot\,\sqrt[3]{x}\)
The numerator is: \(\displaystyle \L\,\sqrt{6\cdot x^8\cdot y^8\cdot y} \:=\:\sqrt{6}\cdot\sqrt{x^8}\cdot\sqrt{y^8}\cdot\sqrt{y} \:= \:\sqrt{6}\cdot x^4\cdot y^4\cdot\sqrt{y} \;=\;x^4y^4\sqrt{6y}\)
The denominator is: \(\displaystyle \L\,\sqrt{5\cdot x^2\cdot y^2} \:=\:\sqrt{5}\cdot\sqrt{x^2}\cdot\sqrt{y^4} \;= \;xy^2\sqrt[5]\)
The fraction becomes: \(\displaystyle \L\,\frac{x^4y^4\sqrt{6y}}{xy^2\sqrt{5}} \:= \:\frac{x^3y^2\sqrt{6y}}{\sqrt{5}}\)
Multiply top and bottom by \(\displaystyle \sqrt{5}:\;\;\L\frac{\sqrt{5}}{\sqrt{5}}\,\cdot\,\frac{x^3y^2\sqrt{6y}}{\sqrt{5}} \;=\;\frac{x^3y^2\sqrt{30y}}{5}\)
Multiply top and bottom by \(\displaystyle \sqrt[3]{36}:\;\;\L\frac{\sqrt[3]{36}}{\sqrt[3]{36}}\,\cdot\,\frac{2\,+\,\sqrt[3]{3}}{\sqrt[3]{6}} \:=\:\frac{2\sqrt[3]{36}\,+\,\sqrt[3]{108}}{\sqrt[3]{216}} \;= \;\frac{2\sqrt[3]{36}\,+\,\sqrt[3]{108}}{6}\)
Note that the numerator can be simplified: 3108=327⋅4=327⋅34=334
Final answer: \(\displaystyle \L\;\frac{2\sqrt[3]{36}\,+\,3\sqrt[3]{4}}{6}\)
This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
By continuing to use this site, you are consenting to our use of cookies.