double angle equation: cos(2theta) + cos(4theta)= 0

Hello, cledesma!

We're expected to know this identity: .cos2A=2cos2 ⁣A1\displaystyle \cos2A \:=\:2\cos^2\!A - 1

I'll assume that: .0θ2π\displaystyle 0 \:\leq\: \theta\:\leq\:2\pi


cos2θ+cos4θ=0\displaystyle \cos 2\theta + \cos 4\theta\:=\: 0

Using the identity: .cos2θ+cos4θ  =  0\displaystyle \cos2\theta + \underbrace{\cos4\theta} \;=\;0
. . . . . . . . . . . cos2θ+2cos2 ⁣2θ1=02cos2 ⁣θ+cos2θ1=0\displaystyle \cos2\theta + \overbrace{2\cos^2\!2\theta - 1} \:=\:0 \quad\Rightarrow\quad 2\cos^2\!\theta + \cos2\theta - 1 \:=\:0

This factors: .(cos2θ+1)(2cos2θ1)  =  0\displaystyle (\cos2\theta + 1)(2\cos2\theta - 1) \;=\;0


And we have two equations to solve:

cos2θ+1=0cos2θ=12θ=π,3πθ=π2,3π2\displaystyle \cos2\theta + 1 \:=\:0 \quad\Rightarrow\quad \cos2\theta \:=\:-1 \quad\Rightarrow\quad 2\theta \:=\:\pi,\:3\pi \quad\Rightarrow\quad \boxed{\theta \:=\:\frac{\pi}{2},\:\frac{3\pi}{2}}

2cos2θ1=0cos2θ=122θ=π3,5π3,7π3,11π3θ=π6,5π6,7π6,11π6\displaystyle 2\cos2\theta - 1 \:=\:0 \quad\Rightarrow\quad \cos2\theta \:=\:\frac{1}{2} \quad\Rightarrow\quad 2\theta \:=\:\frac{\pi}{3},\:\frac{5\pi}{3},\:\frac{7\pi}{3},\:\frac{11\pi}{3}\quad\Rightarrow\quad \boxed{\theta \:=\:\frac{\pi}{6},\:\frac{5\pi}{6},\:\frac{7\pi}{6},\:\frac{11\pi}{6}}

 
Top