Start with your equation [MATH]ax+by+cz = d[/MATH] and your given point [MATH](p,q,r)[/MATH] on the plane. A normal vector to your plane is [MATH]\vec N = \langle a,b,c \rangle.[/MATH]. Create any nonzero vector [MATH]\vec U[/MATH] perpendicular to [MATH]\vec N[/MATH]. This is trivial. For example [MATH]\vec U = \langle -b, a, 0\rangle[/MATH] will work if [MATH]a[/MATH] and [MATH]b[/MATH] aren't [MATH]0[/MATH]. (If you can't find two nonzero coefficients your problem is trivial anyway). Create another vector [MATH]\vec V = \vec N \times \vec U[/MATH]. Now divide [MATH]\vec U[/MATH] and [MATH]\vec V[/MATH] by their lengths to make unit vectors [MATH]\hat u[/MATH] and [MATH]\hat v[/MATH]. These are perpendicular unit vectors in your plane. Then a circle of radius [MATH]R[/MATH] in your plane with [MATH](p,q,r)[/MATH] as center is
[MATH]\langle x,y,z \rangle= \langle p,q,r \rangle + \vec u R\cos t + \vec v R\sin t,~0 \le t \le 2\pi[/MATH],