Product Rule:
Given: \(\displaystyle f(x) g(x)\)
\(\displaystyle g(x)[f'(x)] + f(x)[g'(x)]\)
\(\displaystyle f(x) = 3xe^{x}\csc(x)\)
\(\displaystyle f'(x) = \csc(x) [\dfrac{d}{dx} 3xe^{x} ] + 3xe^{x}[\dfrac{d}{dx} \csc(x) ]\)
\(\displaystyle f'(x) = \tan(x)[3xe^{x}] + 3xe^{x}[-\csc(x)\cot(x)]\)
\(\displaystyle f'(x) = \tan(x)[3xe^{x}] + [-3xe^{x} \csc(x)\cot(x)]\)
\(\displaystyle f'(x) = \tan(x)[3xe^{x}] - 3xe^{x} \csc(x)\cot(x)\) :?:
Given: \(\displaystyle f(x) g(x)\)
\(\displaystyle g(x)[f'(x)] + f(x)[g'(x)]\)
\(\displaystyle f(x) = 3xe^{x}\csc(x)\)
\(\displaystyle f'(x) = \csc(x) [\dfrac{d}{dx} 3xe^{x} ] + 3xe^{x}[\dfrac{d}{dx} \csc(x) ]\)
\(\displaystyle f'(x) = \tan(x)[3xe^{x}] + 3xe^{x}[-\csc(x)\cot(x)]\)
\(\displaystyle f'(x) = \tan(x)[3xe^{x}] + [-3xe^{x} \csc(x)\cot(x)]\)
\(\displaystyle f'(x) = \tan(x)[3xe^{x}] - 3xe^{x} \csc(x)\cot(x)\) :?:
Last edited: