By definition, ∣z∣=zz, where z is the complex conjugate of z. So we havehow can I solve |e^ix - 1| = 2 (x E (0,2pi)) ? what kind of ecuation is it?
Where did the sine function come from?what I get is this: [MATH]\sqrt{Cos[x]^2 + Sin[x]^2} -1 = 2[/MATH]
I think we should follow Jomo's approach. Taking note that ∣z∣2=ℜ2(z)+ℑ2(z)how can I solve |e^ix - 1| = 2 (x E (0,2pi)) ? what kind of ecuation is it?