I've done a question similar to this, however this one has no complete equations i can solve for.
Determine the equation of the plane that passes through [FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Main]3[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Main]8[/FONT][FONT=MathJax_Main])[/FONT](1,3,8) and is perpendicular to the line of intersection of the planes [FONT=MathJax_Main]3[/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]z[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0[/FONT]3x−2z+1=0 and [FONT=MathJax_Main]4[/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]3[/FONT][FONT=MathJax_Math-italic]y[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]7[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0[/FONT]4x+3y+7=0.
I know to take the cross product of the two normals to get my new direction vector, but im stuck at that point.