Establish the Identity

drummguy04

New member
Joined
May 5, 2013
Messages
2
(sinx/cscx-1)+(sinx/cscx+1)=2tan^2x

I have tried to prove the equation by starting on the left side and working to get rid of the Cosecants. Unfortunately it hasn't gone well.
 
First, you will need to clarify, is it (sinx/(cscx-1) )+(sinx/(cscx+1))=2tan^2x?

I woud be inclined to change everything to sine and cosine: sin(x)/(1/sin(x)- 1)+sin(x)/(1/sin(x)+1). Simplify by multiplying both numerator and denominator by sin(x): sin^2(x)/(1- sin(x))+ sin^2(x)/(1+ sin(x)). To combine the fractions we need to get a "common denominator" by multiplying numerator and denominator of the first fraction by 1+ sin(x) and of the second fraction by 1- sin(x):
sin2(x)(1+sin(x))1sin2(x)+sin2(x)(1sin(x))1sin2(x)\displaystyle \frac{sin^2(x)(1+ sin(x))}{1- sin^2(x)}+ \frac{sin^2(x)(1- sin(x))}{1- sin^2(x)}
The denominator is, of course, cos2(x)\displaystyle cos^2(x) so that becomes sin2(x)+sin3(x)+sin2(x)sin3(x)cos2(x)=2sin2(x)cos2(x)\displaystyle \frac{sin^2(x)+ sin^3(x)+ sin^2(x)- sin^3(x)}{cos^2(x)}= \frac{2sin^2(x)}{cos^2(x)}.
 
Hello, drummguy04!

sinxcscx1+sinxcscx+1=2tan2 ⁣x\displaystyle \dfrac{\sin x}{\csc x-1}+\dfrac{\sin x}{\csc x+1}\:=\:2\tan^2\!x

I would do it like this . . .

sinxcscx1+sinxcscx+1  =  sinx(1cscx1+1cscx+1)\displaystyle \displaystyle\dfrac{\sin x}{\csc x - 1} + \dfrac{\sin x}{\csc x + 1} \;=\; \sin x\left(\frac{1}{\csc x - 1} + \frac{1}{\csc x + 1}\right)

. . . . . . . . . . . . . . . . . =  sinx((cscx+1)+(cscx1)(cscx1)(cscx+1))\displaystyle \displaystyle=\;\sin x\left(\frac{(\csc x+1) + (\csc x-1)}{(\csc x -1)(\csc x + 1)}\right)

. . . . . . . . . . . . . . . . . =  sinx2cscxcsc2 ⁣x1\displaystyle =\;\dfrac{\sin x\cdot2\csc x}{\csc^2\!x-1}

. . . . . . . . . . . . . . . . . =  2cot2 ⁣x\displaystyle =\;\dfrac{2}{\cot^2\!x}

. . . . . . . . . . . . . . . . . =  2tan2 ⁣x\displaystyle =\;2\tan^2\!x
 
Top