Evaluate double int. as int[1,5] int[0,6] x/y dxdy & int[0,6] int[1,5] x/y dydx

smith1993123

New member
Joined
Jul 28, 2016
Messages
3
\(\displaystyle \mbox{a) Evaluate the double integral from the previous problem }\)

. . . . .\(\displaystyle \mbox{as an iterated integral in two different ways:}\)

. . . . .\(\displaystyle \mbox{i. }\, \)\(\displaystyle \displaystyle \int_1^5\, \int_0^6\, \dfrac{x}{y}\, dx\, dy\, \mbox{ and ii. }\, \int_0^6\, \int_1^5\, \dfrac{x}{y}\, dy\, dx\)

\(\displaystyle \mbox{b) Use an iterated integral to evaluate the double integral,}\)

. . . . .\(\displaystyle \displaystyle \iint\limits_R\, x\, \cos(xy)\, dA,\, \mbox{ where }\, R\, =\, [1,\, 2]\, \times\, \left[0,\, \dfrac{\pi}{2}\right]\)
 

Attachments

  • image2.JPG
    image2.JPG
    269.1 KB · Views: 6
Last edited by a moderator:
\(\displaystyle \mbox{a) Evaluate the double integral from the previous problem }\)

. . . . .\(\displaystyle \mbox{as an iterated integral in two different ways:}\)

. . . . .\(\displaystyle \mbox{i. }\, \)\(\displaystyle \displaystyle \int_1^5\, \int_0^6\, \dfrac{x}{y}\, dx\, dy\, \mbox{ and ii. }\, \int_0^6\, \int_1^5\, \dfrac{x}{y}\, dy\, dx\)

\(\displaystyle \mbox{b) Use an iterated integral to evaluate the double integral,}\)

. . . . .\(\displaystyle \displaystyle \iint\limits_R\, x\, \cos(xy)\, dA,\, \mbox{ where }\, R\, =\, [1,\, 2]\, \times\, \left[0,\, \dfrac{\pi}{2}\right]\)

What are your thoughts?

Please share your work with us ...even if you know it is wrong

If you are stuck at the beginning tell us and we'll start with the definitions.

You need to read the rules of this forum. Please read the post titled "Read before Posting" at the following URL:

http://www.freemathhelp.com/forum/announcement.php?f=33
 
Last edited by a moderator:
\(\displaystyle \mbox{a) Evaluate the double integral from the previous problem }\)

. . . . .\(\displaystyle \mbox{as an iterated integral in two different ways:}\)

. . . . .\(\displaystyle \mbox{i. }\, \)\(\displaystyle \displaystyle \int_1^5\, \int_0^6\, \dfrac{x}{y}\, dx\, dy\, \mbox{ and ii. }\, \int_0^6\, \int_1^5\, \dfrac{x}{y}\, dy\, dx\)
Please reply showing your work and results for the following:

. . . . .\(\displaystyle \mbox{1. }\, \)\(\displaystyle \displaystyle \int_0^6\, \dfrac{x}{a}\, dx,\, \mbox{ where }\, a\, \mbox{ is a constant}\)

. . . . .\(\displaystyle \mbox{2. }\, \)\(\displaystyle \displaystyle \int_1^5\, \dfrac{b}{y}\, dy,\, \mbox{ where }\, b\, \mbox{ is a constant}\)

Thank you! ;)
 
Top