smith1993123
New member
- Joined
- Jul 28, 2016
- Messages
- 3
\(\displaystyle \mbox{a) Evaluate the double integral from the previous problem }\)
. . . . .\(\displaystyle \mbox{as an iterated integral in two different ways:}\)
. . . . .\(\displaystyle \mbox{i. }\, \)\(\displaystyle \displaystyle \int_1^5\, \int_0^6\, \dfrac{x}{y}\, dx\, dy\, \mbox{ and ii. }\, \int_0^6\, \int_1^5\, \dfrac{x}{y}\, dy\, dx\)
\(\displaystyle \mbox{b) Use an iterated integral to evaluate the double integral,}\)
. . . . .\(\displaystyle \displaystyle \iint\limits_R\, x\, \cos(xy)\, dA,\, \mbox{ where }\, R\, =\, [1,\, 2]\, \times\, \left[0,\, \dfrac{\pi}{2}\right]\)
. . . . .\(\displaystyle \mbox{as an iterated integral in two different ways:}\)
. . . . .\(\displaystyle \mbox{i. }\, \)\(\displaystyle \displaystyle \int_1^5\, \int_0^6\, \dfrac{x}{y}\, dx\, dy\, \mbox{ and ii. }\, \int_0^6\, \int_1^5\, \dfrac{x}{y}\, dy\, dx\)
\(\displaystyle \mbox{b) Use an iterated integral to evaluate the double integral,}\)
. . . . .\(\displaystyle \displaystyle \iint\limits_R\, x\, \cos(xy)\, dA,\, \mbox{ where }\, R\, =\, [1,\, 2]\, \times\, \left[0,\, \dfrac{\pi}{2}\right]\)
Attachments
Last edited by a moderator: