Evaluate the limit given the information

jtstien

New member
Joined
Feb 4, 2016
Messages
5
Given the problem in the attachment, I am unsure about how to utilize the given information to evaluate the limit as x approaches 0.



\(\displaystyle \mbox{2. If I define the functions }\, f(x)\, \mbox{ and }\, h(x)\, \mbox{ as:}\)

. . . .f(x)=x3+x25x2\displaystyle f(x)\, =\, x^3\, +\, x^2\, -\, 5x\, -\, 2

. . . .h(x)=f(x)g(x)\displaystyle h(x)\, =\, \dfrac{f(x)}{g(x)}

\(\displaystyle \mbox{...then evaluate:}\)

. . . .limx0(3h(x)+f(x)2g(x))\displaystyle \displaystyle \lim_{x\, \rightarrow\, 0}\, \bigg(3\, h(x)\, +\, f(x)\, -\, 2\, g(x) \bigg)

\(\displaystyle \mbox{...under the following assumptions:}\)

. . . .\(\displaystyle \mbox{a. }\, h(x)\, \mbox{ is continuous for everywhere except }\, x\, =\, 2\)

. . . .\(\displaystyle \mbox{b. }\, \)limxh(x)=\displaystyle \displaystyle \lim_{x\, \rightarrow\, \infty}\, h(x)\, =\, \infty

. . . .\(\displaystyle \mbox{c. }\, \)limx2h(x)=\displaystyle \displaystyle \lim_{x\, \rightarrow\, 2}\, h(x)\, =\, 13\displaystyle \dfrac{1}{3}



If someone could help me with this problem it would be greatly appreciated.
 

Attachments

  • IMG_0342.JPG
    IMG_0342.JPG
    292.5 KB · Views: 1
Last edited by a moderator:
Top