Evaluate this expression

chijioke

Full Member
Joined
Jul 27, 2022
Messages
377
1(8)13+1(32)151(64)13\displaystyle \frac{ 1 }{( - 8 ) ^ {\frac{ - 1 }{ 3 }}} + \frac{ 1 }{( - 32 ) ^ {\frac{ - 1 }{ 5 }}} - \frac{ 1 }{( - 64 ) ^ {\frac{ - 1 }{ 3 }}}

Solution

1(8)13+1(32)151(64)13=11(8)13+11(32)1511(64)13=11((2)3)13+11((2)5)1511((2)6)13=112+11211(2)2=2+(2)(2)2=22(+4)=44=8\begin{array}{llllllll} \frac{ 1 }{( - 8 ) ^ {\frac{ - 1 }{ 3 }}} + \frac{ 1 }{( - 32 ) ^ {\frac{ - 1 }{ 5 }}} - \frac{ 1 }{( - 64 ) ^ {\frac{ - 1 }{ 3 }}} \\[11pt] \newline = \frac{ 1 }{\frac{ 1 }{( - 8 ) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{( - 32 ) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{( - 64 ) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \newline = \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 3 } \right) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 5 } \right) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 6 } \right) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \newline =\frac{\frac{ 1 }{ 1 }}{ - 2 } + \frac{\frac{ 1 }{ 1 }}{ - 2 } - \frac{\frac{ 1 }{ 1 }}{( - 2 ) ^ { 2 }} \\[8pt] = - 2 + (- 2 ) - ( - 2 ) ^ { 2 } \\ = - 2 - 2 - (+4) \\ = -4 - 4 = - 8 \end{array}
Is my solution correct?
Am not sure if work is correct. Please help me check.
 
1(8)13+1(32)151(64)13\displaystyle \frac{ 1 }{( - 8 ) ^ {\frac{ - 1 }{ 3 }}} + \frac{ 1 }{( - 32 ) ^ {\frac{ - 1 }{ 5 }}} - \frac{ 1 }{( - 64 ) ^ {\frac{ - 1 }{ 3 }}}

Solution

1(8)13+1(32)151(64)13=11(8)13+11(32)1511(64)13=11((2)3)13+11((2)5)1511((2)6)13=112+11211(2)2=2+(2)(2)2=22(+4)=44=8\begin{array}{llllllll} \frac{ 1 }{( - 8 ) ^ {\frac{ - 1 }{ 3 }}} + \frac{ 1 }{( - 32 ) ^ {\frac{ - 1 }{ 5 }}} - \frac{ 1 }{( - 64 ) ^ {\frac{ - 1 }{ 3 }}} \\[11pt] \newline = \frac{ 1 }{\frac{ 1 }{( - 8 ) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{( - 32 ) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{( - 64 ) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \newline = \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 3 } \right) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 5 } \right) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 6 } \right) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \newline =\frac{\frac{ 1 }{ 1 }}{ - 2 } + \frac{\frac{ 1 }{ 1 }}{ - 2 } - \frac{\frac{ 1 }{ 1 }}{( - 2 ) ^ { 2 }} \\[8pt] = - 2 + (- 2 ) - ( - 2 ) ^ { 2 } \\ = - 2 - 2 - (+4) \\ = -4 - 4 = - 8 \end{array}
Is my solution correct?
Am not sure if work is correct. Please help me check.
There's a problem with the third term. -64 is not equal to (-2)^6.
 
There's a problem with the third term. -64 is not equal to (-2)^6.
Thanks for the observation.
1(8)13+1(32)151(64)13\displaystyle \frac{ 1 }{( - 8 ) ^ {\frac{ - 1 }{ 3 }}} + \frac{ 1 }{( - 32 ) ^ {\frac{ - 1 }{ 5 }}} - \frac{ 1 }{( - 64 ) ^ {\frac{ - 1 }{ 3 }}}

Solution

1(8)13+1(32)151(64)13=11(8)13+11(32)1511(64)13=11((2)3)13+11((2)5)1511(2)6)13because26=64 and 64=112+11211(2)2=112+112114=2+(2)(4)=224=44=8\begin{array}{llllllllll} \frac{ 1 }{( - 8 ) ^ {\frac{ - 1 }{ 3 }}} + \frac{ 1 }{( - 32 ) ^ {\frac{ - 1 }{ 5 }}} - \frac{ 1 }{( - 64 ) ^ {\frac{ - 1 }{ 3 }}} \\[11pt] \newline = \frac{ 1 }{\frac{ 1 }{( - 8 ) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{( - 32 ) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{( - 64 ) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \newline = \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 3 } \right) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 5 } \right) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{ \left( 2 ) ^ { 6 } \right) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \text{because} -2^6 = 64 ~ \text{and} \ne ~ -64 \\ =\frac{\frac{ 1 }{ 1 }}{ - 2 } + \frac{\frac{ 1 }{ 1 }}{ - 2 } - \frac{\frac{ 1 }{ 1 }}{( 2 ) ^ { 2 }} \\[8pt] = \frac{\frac{ 1 }{ 1 }}{ - 2 } + \frac{\frac{ 1 }{ 1 }}{ - 2 } - \frac{\frac{ 1 }{ 1 }}{ 4 } \\[7pt] = - 2 + (- 2 ) - ( 4) \\ = - 2 - 2 - 4 \\ = -4 - 4 = - 8 \end{array}
Is it okay now?
 
1(8)13+1(32)151(64)13=11(8)13+11(32)1511(64)13=11((2)3)13+11((2)5)1511(2)6)13because26=64 and 64=112+11211(2)2=112+112114=2+(2)(4)=224=44=8\begin{array}{llllllllll} \frac{ 1 }{( - 8 ) ^ {\frac{ - 1 }{ 3 }}} + \frac{ 1 }{( - 32 ) ^ {\frac{ - 1 }{ 5 }}} - \frac{ 1 }{( - 64 ) ^ {\frac{ - 1 }{ 3 }}} \\[11pt] \newline = \frac{ 1 }{\frac{ 1 }{( - 8 ) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{( - 32 ) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{( - 64 ) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \newline = \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 3 } \right) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 5 } \right) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{ \left( 2 ) ^ { 6 } \right) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \text{because} -2^6 = 64 ~ \text{and} \ne ~ -64 \\ =\frac{\frac{ 1 }{ 1 }}{ - 2 } + \frac{\frac{ 1 }{ 1 }}{ - 2 } - \frac{\frac{ 1 }{ 1 }}{( 2 ) ^ { 2 }} \\[8pt] = \frac{\frac{ 1 }{ 1 }}{ - 2 } + \frac{\frac{ 1 }{ 1 }}{ - 2 } - \frac{\frac{ 1 }{ 1 }}{ 4 } \\[7pt] = - 2 + (- 2 ) - ( 4) \\ = - 2 - 2 - 4 \\ = -4 - 4 = - 8 \end{array}
Is it okay now?
No. -64 is not equal to 2^6 either!
 
1(8)13+1(32)151(64)13\displaystyle \frac{ 1 }{( - 8 ) ^ {\frac{ - 1 }{ 3 }}} + \frac{ 1 }{( - 32 ) ^ {\frac{ - 1 }{ 5 }}} - \frac{ 1 }{( - 64 ) ^ {\frac{ - 1 }{ 3 }}}

Solution

1(8)13+1(32)151(64)13=11(8)13+11(32)1511(64)13=11((2)3)13+11((2)5)1511((2)6)13=112+11211(2)2=2+(2)(2)2=22(+4)=44=8\begin{array}{llllllll} \frac{ 1 }{( - 8 ) ^ {\frac{ - 1 }{ 3 }}} + \frac{ 1 }{( - 32 ) ^ {\frac{ - 1 }{ 5 }}} - \frac{ 1 }{( - 64 ) ^ {\frac{ - 1 }{ 3 }}} \\[11pt] \newline = \frac{ 1 }{\frac{ 1 }{( - 8 ) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{( - 32 ) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{( - 64 ) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \newline = \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 3 } \right) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 5 } \right) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 6 } \right) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \newline =\frac{\frac{ 1 }{ 1 }}{ - 2 } + \frac{\frac{ 1 }{ 1 }}{ - 2 } - \frac{\frac{ 1 }{ 1 }}{( - 2 ) ^ { 2 }} \\[8pt] = - 2 + (- 2 ) - ( - 2 ) ^ { 2 } \\ = - 2 - 2 - (+4) \\ = -4 - 4 = - 8 \end{array}
Is my solution correct?
Am not sure if work is correct. Please help me check.
A suggestion that will help you out a bit.
x1=1xx^{-1} = \dfrac{1}{x}

But that means
1x1=(x1)1=x(1)(1)=x1=x\dfrac{1}{x^{-1}} = \left ( x^{-1} \right )^{-1} = x^{(-1)(-1)} = x^1 = x.

So a negative exponent in the denominator flips the number to the numerator. There is no need to write something like
1x1=1(1x)\dfrac{1}{x^{-1}} = \dfrac{ 1 }{ \left ( \dfrac{1}{x} \right ) }

-Dan
 
Just like + tells you to add, the negative sign in the exponent tells you to take the reciprocal.
 
No. -64 is not equal to 2^6 either!
I mean 26=64\displaystyle -2^6=64
because 2×2×2×2×2×2=64\displaystyle - 2 \times - 2 \times - 2 \times - 2 \times - 2 \times - 2 = 64
 
Sorry, but -26 is not 64
How much is 100-26? Is it 36 or 164?
How much is 0-26?
How much is 26?
How much is -26?
What do you get if you put a negative sign in front of 64?
 
1(8)13+1(32)151(64)13=11(8)13+11(32)1511(64)13=11((2)3)13+11((2)5)1511(2)6)13because26=64 and 64=112+11211(2)2=112+112114=2+(2)(4)=224=44=8\begin{array}{llllllllll} \frac{ 1 }{( - 8 ) ^ {\frac{ - 1 }{ 3 }}} + \frac{ 1 }{( - 32 ) ^ {\frac{ - 1 }{ 5 }}} - \frac{ 1 }{( - 64 ) ^ {\frac{ - 1 }{ 3 }}} \\[11pt] \newline = \frac{ 1 }{\frac{ 1 }{( - 8 ) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{( - 32 ) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{( - 64 ) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \newline = \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 3 } \right) ^ {\frac{ 1 }{ 3 }}}} + \frac{ 1 }{\frac{ 1 }{ \left( ( - 2 ) ^ { 5 } \right) ^ {\frac{ 1 }{ 5 }}}} - \frac{ 1 }{\frac{ 1 }{ \left( 2 ) ^ { 6 } \right) ^ {\frac{ 1 }{ 3 }}}} \\[14pt] \text{because} -2^6 = 64 ~ \text{and} \ne ~ -64 \\ =\frac{\frac{ 1 }{ 1 }}{ - 2 } + \frac{\frac{ 1 }{ 1 }}{ - 2 } - \frac{\frac{ 1 }{ 1 }}{( 2 ) ^ { 2 }} \\[8pt] = \frac{\frac{ 1 }{ 1 }}{ - 2 } + \frac{\frac{ 1 }{ 1 }}{ - 2 } - \frac{\frac{ 1 }{ 1 }}{ 4 } \\[7pt] = - 2 + (- 2 ) - ( 4) \\ = - 2 - 2 - 4 \\ = -4 - 4 = - 8 \end{array}
Is it okay now?
I mean 26=64\displaystyle -2^6=64
because 2×2×2×2×2×2=64\displaystyle - 2 \times - 2 \times - 2 \times - 2 \times - 2 \times - 2 = 64
My comment was about your replacing (64)13(-64)^\frac{1}{3} with (26)13(2^6)^\frac{1}{3}. Your reply is irrelevant. It is not true that 64=26-64=2^6. You simply dropped a negative sign, and (if you go the way you are going, which is extremely inefficient) the right thing to have done is to change (64)13(-64)^\frac{1}{3} to (26)13(-2^6)^\frac{1}{3}.

As for 26=64\displaystyle -2^6=64, that is wrong because the order of operations tells us to do the exponent before the negation: 26=(26)=64\displaystyle -2^6=-(2^6)=-64. It does not mean (2)6(-2)^6; it is not -2, but 2 that is raised to the power.

In my opinion, it's time to show you how to apply some of the hints that have been given. Here is how I might start the work:

1(8)13+1(32)151(64)13=(8)13+(32)15(64)13=((2)3)13+((2)5)15((4)3)13\frac{1}{(-8)^{-\frac{1}{3}}}+\frac{1}{(-32)^{-\frac{1}{5}}}-\frac{1}{(-64)^{-\frac{1}{3}}}=\\(-8)^{\frac{1}{3}}+(-32)^{\frac{1}{5}}-(-64)^{\frac{1}{3}}=\\((-2)^3)^{\frac{1}{3}}+((-2)^5)^{\frac{1}{5}}-((-4)^3)^{\frac{1}{3}}
Do you follow that? If so, continue.
 
I mean 26=64\displaystyle -2^6=64
because 2×2×2×2×2×2=64\displaystyle - 2 \times - 2 \times - 2 \times - 2 \times - 2 \times - 2 = 64
Note the difference between
26=2×2×2×2×2×2=64\displaystyle -2^6 = - 2\times2\times2\times2\times2\times2 = -64
and
(2)6=2×2×2×2×2×2=+64\displaystyle (-2)^6 = -2 \times-2\times-2\times-2\times-2\times-2 = +64
 
Sorry, but -26 is not 64
How much is 100-26? Is it 36 or 164?
How much is 0-26?
How much is 26?
How much is -26?
What do you get if you put a negative sign in front of 64?
Think of 64\displaystyle 64 as 43\displaystyle 4^3 rather than 26\displaystyle 2^6.
Note the difference between
26=2×2×2×2×2×2=64\displaystyle -2^6 = - 2\times2\times2\times2\times2\times2 = -64
and
(2)6=2×2×2×2×2×2=+64\displaystyle (-2)^6 = -2 \times-2\times-2\times-2\times-2\times-2 = +64
My comment was about your replacing (64)13(-64)^\frac{1}{3} with (26)13(2^6)^\frac{1}{3}. Your reply is irrelevant. It is not true that 64=26-64=2^6. You simply dropped a negative sign, and (if you go the way you are going, which is extremely inefficient) the right thing to have done is to change (64)13(-64)^\frac{1}{3} to (26)13(-2^6)^\frac{1}{3}.

As for 26=64\displaystyle -2^6=64, that is wrong because the order of operations tells us to do the exponent before the negation: 26=(26)=64\displaystyle -2^6=-(2^6)=-64. It does not mean (2)6(-2)^6; it is not -2, but 2 that is raised to the power.

In my opinion, it's time to show you how to apply some of the hints that have been given. Here is how I might start the work:

1(8)13+1(32)151(64)13=(8)13+(32)15(64)13=((2)3)13+((2)5)15((4)3)13\frac{1}{(-8)^{-\frac{1}{3}}}+\frac{1}{(-32)^{-\frac{1}{5}}}-\frac{1}{(-64)^{-\frac{1}{3}}}=\\(-8)^{\frac{1}{3}}+(-32)^{\frac{1}{5}}-(-64)^{\frac{1}{3}}=\\((-2)^3)^{\frac{1}{3}}+((-2)^5)^{\frac{1}{5}}-((-4)^3)^{\frac{1}{3}}
Do you follow that? If so, continue.
All the replies noted. But I think I would prefer to use 26\displaystyle 2^6

1(8)(13)+1(32)(15)1(64)(13)=((8)(13))(1)+((32)(15))(1)((64)(13))(1)=(8)((13)×(1))+(32)((15)×(1))(64)((13)×(1))=(8)13+(32)15(64)13=(23)13+(25)15((1)×26)13=(2)+(2)((1(2)2)=(2)2(1(4))=22(4)//=22+4=4+4=0 \frac{ 1 }{( - 8 ) ^ {( - \frac{ 1 }{ 3 })}} + \frac{ 1 }{( - 32 ) ^ {( - \frac{ 1 }{ 5 })}} - \frac{ 1 }{( - 64 ) ^ {( - \frac{ 1 }{ 3 })}} \\[5pt] = \left( ( - 8 ) ^ {( - \frac{ 1 }{ 3 })} \right) ^ {( - 1 )} + \left( ( - 32 ) ^ {( - \frac{ 1 }{ 5 })} \right) ^ {( - 1 )} - \left( ( - 64 ) ^ {( - \frac{ 1 }{ 3 })} \right) ^ {( - 1 )} \\[5pt] = ( - 8 ) ^ { \left( ( - \frac{ 1 }{ 3 }) \times ( - 1 ) \right) } + ( - 32 ) ^ { \left( ( - \frac{ 1 }{ 5 }) \times ( - 1 ) \right) } - ( - 64 ) ^ { \left( ( - \frac{ 1 }{ 3 }) \times ( - 1 ) \right) } \\[5pt] = ( - 8 ) ^ {\frac{ 1 }{ 3 }} + ( - 32 ) ^ {\frac{ 1 }{ 5 }} - ( - 64 ) ^ {\frac{ 1 }{ 3 }} \\[4pt] = ( - 2 ^ { 3 }) ^ {\frac{ 1 }{ 3 }} + ( - 2 ^ { 5 }) ^ {\frac{ 1 }{ 5 }} - \left( ( - 1 ) \times 2 ^ { 6 } \right) ^ {\frac{ 1 }{ 3 }} \\[4pt] = ( - 2 ) + ( - 2 ) - \left( ( - 1(2) ^ { 2 } \right) \\[3pt] = ( - 2 ) - 2 - \left( - 1 (4) \right) \\[2pt] = - 2 - 2 - (-4) // = - 2 - 2 + 4 \\ = -4 + 4 \\ = 0 Is it okay now?
 
You have the correct answer but I'm not sure that you just weren't lucky.
Here are my concerns:
1) You had ((-1)x26)1/3 and you wrote that equals (-1)(2)2. My question is did you write -1 because you computed that (-1)1/3= -1 or did you just ignore that -1 was being raised to the 1/3 power?

2) Did you replace (-8)with -23 because you know that (-8)=(-2)3=-23?
If the power would have been even, say 4, then for example 16 = (-2)4 = -24=-16 is wrong! Which equal sign is incorrect.
 
You have the correct answer but I'm not sure that you just weren't lucky.
Here are my concerns:
1) You had ((-1)x26)1/3 and you wrote that equals (-1)(2)2. My question is did you write -1 because you computed that (-1)1/3= -1 or did you just ignore that -1 was being raised to the 1/3 power?
I think I made an error there. It should have been something like this
=(23)13+(25)15((1)(26)13)=(2)+(2)((1)(2)2)=(2)2(1(4))=22(4)=22+4=4+4=0 = ( - 2 ^ { 3 }) ^ {\frac{ 1 }{ 3 }} + ( - 2 ^ { 5 }) ^ {\frac{ 1 }{ 5 }} - \left( ( - 1 ) \left( 2 ^ { 6 } \right) ^ {\frac{ 1 }{ 3 }} \right)\\[3pt] = ( - 2 ) + ( - 2 ) - \left( ( - 1)(2) ^ { 2 } \right) \\[3pt] = ( - 2 ) - 2 - \left( - 1 (4) \right) \\[2pt] = - 2 - 2 - (-4) \\ = - 2 - 2 + 4 \\ = -4 + 4 \\ = 0 This is because if it appears like this
(1×26)13 \left( - 1 \times 2 ^ { 6 } \right) ^ {\frac{ 1 }{ 3 }} It means am forgetting too quickly that 1\displaystyle -1 is also being raised to power 13\frac{1}{3}
which is not supposed to be so if 64\displaystyle -64 must maintain its value as 64 .\displaystyle -64\text{~.}

2) Did you replace (-8)with -23 because you know that (-8)=(-2)3=-23?
Ya. I know because (2)×(2)×(2) still gives me 8(-2) × (-2) × (-2)~\text{still gives me}~ - 8
If the power would have been even, say 4, then for example 16 = (-2)4 = -24=-16 is wrong! Which equal sign is incorrect.
Either sign could be used since
(2)×(2)×(2)×(2)=16and also (2)×(2)×(2)×(2)=16(-2)×(-2)×(-2)×(-2) = 16\\ \text{and also}~(2)×(2)×(2)×(2)=16Even power always gives positive sign.
 
Note the difference between
26=2×2×2×2×2×2=64\displaystyle -2^6 = - 2\times2\times2\times2\times2\times2 = -64
Why did you put the -2 only on the first 2?
and
(2)6=2×2×2×2×2×2=+64\displaystyle (-2)^6 = -2 \times-2\times-2\times-2\times-2\times-2 = +64
I stand to be corrected please. Is
26(2)6-2^6 \ne(-2)^6I am thinking that
26=(2)6=64-2^6=(-2)^6=64If you say that 26=2×2×2×2×2×2instead of (2)×(2)×(2)×(2)×(2)×(2)-2^6=-2×2×2×2×2×2 \\ \text{instead of}~ (-2)×(-2)×(-2)×(-2)×(-2)×(-2)Could you please prove it?
 
Last edited:
Why did you put the -2 only on the first 2?

I stand to be corrected please. Is
26(2)6-2^6 \ne(-2)^6I am thinking that
26=(2)6=64-2^6=(-2)^6=64If you say that 26=2×2×2×2×2×2instead of (2)×(2)×(2)×(2)×(2)×(2)-2^6=-2×2×2×2×2×2 \\ \text{instead of}~ (-2)×(-2)×(-2)×(-2)×(-2)×(-2)Could you please prove it?
We have explained this to you repeatedly, such as what I said here:
As for 26=64\displaystyle -2^6=64, that is wrong because the order of operations tells us to do the exponent before the negation: 26=(26)=64\displaystyle -2^6=-(2^6)=-64. It does not mean (2)6(-2)^6; it is not -2, but 2 that is raised to the power.
It is not something to prove mathematically, but a standard convention, that when we write something like xy-x^y the exponent applies only to xx, not to x-x. For evidence, consider these sources:


Some of these mention that some calculators or programs follow a different rule, but the mathematical rule is as we say.

So your thinking is wrong. Rather than your 26=(2)6=(2)(2)(2)(2)(2)(2)=64-2^6=(-2)^6=(-2)(-2)(-2)(-2)(-2)(-2)=64the reality is 26=(26)=(2)(2)(2)(2)(2)(2)=64-2^6=-(2^6)=-(2)(2)(2)(2)(2)(2)=-64
 
Why did you put the -2 only on the first 2 in -2^6?
I asked you to answer these questions before.
How much is 100-2^6?
How much is 0-2^6?
How much is -2^6?

What do you get when you put a negative sign in front of 64?
How much is 2^6?
Using your answers to the last two questions above, how much is -2^6.


How much is (-2)^6?
 
Why did you put the -2 only on the first 2? There is only one negative sign. The positive number 2\displaystyle 2 is being raised to the sixth power. I didn't put the negative sign on the first 2\displaystyle 2, I put it at the beginning of the expression.

I stand to be corrected please. Is
26(2)6-2^6 \ne(-2)^6 YES that statement is correct ie they are NOT equal.

I am thinking that
26=(2)6=64-2^6=(-2)^6=64 NO In 26\displaystyle -2^6, only the 2\displaystyle 2 is being raised to the sixth power. If you want all of 2\displaystyle -2 raised to the sixth power you need to put 2\displaystyle -2 in brackets, so you get (2)6\displaystyle (-2)^6.

If you say that 26=2×2×2×2×2×2instead of (2)×(2)×(2)×(2)×(2)×(2)-2^6=-2×2×2×2×2×2 \\ \text{instead of}~ (-2)×(-2)×(-2)×(-2)×(-2)×(-2)Could you please prove it? There is nothing to prove. It is a convention.
See comments in red.
 
I asked you to answer these questions before.
How much is 100-2^6?
10026=1002×2×2×2×2×2=10064=36100-2^6 \\ =100 -2×2×2×2×2×2 \\ = 100 - 64 \\ = 36
How much is 0-2^6?
026=02×2×2×2×2×2=064=640-2^6 \\ = 0 - 2×2×2×2×2×2 \\ = 0 - 64 \\ = -64
How much is -2^6?
26=2×2×2×2×2×2=64-2^6 \\ = 2×2×2×2×2×2 \\ = - 64
What do you get when you put a negative sign in front of 64?
I get -64.
How much is 2^6?
It is 64 because 26=2×2×2×2×2×2=642^6 \\ = 2×2×2×2×2×2 \\ = 64
Using your answers to the last two questions above, how much is -2^6.
26=64-2^6 = -64
How much is (-2)^6?
(2)6=64(-2)^6 = 64I am now convinced that
26=64-2^6 = -64and that
(2)6=64(-2)^6 = 64The two expressions are different with different meanings.
 
Top