Evaluating limit with natural logarithm: h-->0 of [ln(2+h) - ln2]/h

lhagen

New member
Joined
Jan 15, 2017
Messages
1
Use definition of the derivative to evaluate the lim h-->0 of [ln(2+h) - ln2]/h
I have tried breaking up the function but I cannot get past finding indeterminate solutions.
 
Use definition of the derivative to evaluate the lim h-->0 of [ln(2+h) - ln2]/h
I have tried breaking up the function but I cannot get past finding indeterminate solutions.
The idea is simple:
limh0log(2+h)log(2)h=Dx=2[log(x)]\displaystyle \displaystyle{\lim _{h \to 0}}\frac{{\log (2 + h) - \log (2)}}{h} = {D_{x = 2}}\left[ {\log (x)} \right]
 
  1. ------------------------------------------------

    "Use definition of the derivative" is what the problem wants as the method.

limh0 1hln(2+h2) =\displaystyle \displaystyle\lim_{h\to 0} \ \dfrac{1}{h}ln\bigg(\dfrac{2 + h}{2}\bigg) \ =


limh0 ln[(1+h2)1/h]\displaystyle \displaystyle\lim_{h\to 0} \ ln\bigg[\bigg(1 + \dfrac{h}{2}\bigg)^{1/h}\bigg]



Let h/2 = x


Then h = 2x


And 1/h = 1/(2x)


As x approaches 0, 2x approaches 0, and x approaches 0.


2. Substitute these:


limx0 ln[(1+x)12x] =\displaystyle \displaystyle\lim_{x\to 0} \ ln\bigg[(1 + x)^{\tfrac{1}{2x}}\bigg] \ =

limx0 ln[(1+x)1x]12 =\displaystyle \displaystyle\lim_{x\to 0} \ ln\bigg[(1 + x)^{\tfrac{1}{x}}\bigg]^{\tfrac{1}{2}} \ =

limx0 12ln[(1+x)1x] =\displaystyle \displaystyle\lim_{x\to 0} \ \dfrac{1}{2}ln\bigg[(1 + x)^{\tfrac{1}{x}}\bigg] \ =

12limx0 ln[(1+x)1x] =\displaystyle \dfrac{1}{2}\displaystyle\lim_{x\to 0} \ ln\bigg[(1 + x)^{\tfrac{1}{x}}\bigg] \ =

12ln{limx0[(1+x)1x]} =\displaystyle \dfrac{1}{2}ln\bigg\{\displaystyle\lim_{x\to 0} \bigg[(1 + x)^{\tfrac{1}{x}}\bigg]\bigg\} \ =


Can you finish?


 
Top