evaluating limits

wendywoo

New member
Joined
Jun 12, 2011
Messages
31
Evaluate lim (x/??? x^2-2) as x goes into infinity.

I don't remember what to do if the bottom is a radical.
 
Since x\displaystyle x\to \infty, get rid of the 2 and write as:

limxxx2\displaystyle \lim_{x\to \infty}\frac{x}{\sqrt{x^{2}}}

limxxx\displaystyle \lim_{x\to \infty}\frac{x}{|x|}

Since we are heading in the positive direction toward infinity:

limxxx=1\displaystyle \lim_{x\to \infty}\frac{x}{x}=1

That's all it is.

You can do this when x±\displaystyle x\to \pm\infty
 
Hello, wendywoo!

Another approach . . .


Evaluate:   limxxx22\displaystyle \text{Evaluate: }\;\lim_{x\to\infty}\frac{x}{\sqrt{ x^2-2}}

Divide numerator and denominator by x\displaystyle x

. . limxxxx22x  =  limx1x22x2  =  limx112x2  =  110  =  1\displaystyle \lim_{x\to\infty}\frac{\frac{x}{x}}{\frac{\sqrt{x^2-2}}{x}} \;=\;\lim_{x\to\infty}\frac{1}{\sqrt{\frac{x^2-2}{x^2}}} \;=\;\lim_{x\to\infty}\frac{1}{\sqrt{1-\frac{2}{x^2}}} \;=\;\frac{1}{\sqrt{1-0}} \;=\;1

 
Top