Evalutating the Integral: int [a,b] [ (1-sinx) / cosx ] dx

skatru

New member
Joined
Jan 11, 2008
Messages
21
I feel like I've evaluated this integral correctly but the answer in the book is different than what I am getting. Could you just inform me if I am right or if the book is right? Thanks.

ab1sinxcosxdx\displaystyle \int_a^b \frac{1 - sin x}{cosx} dx

ab1cosx(1sinx)dx\displaystyle \int_a^b \frac{1}{cosx}(1 - sinx) dx

ab1cosxsinxcosxdx\displaystyle \int_a^b \frac{1}{cosx} - \frac{sinx}{cosx} dx

absecxtanxdx\displaystyle \int_a^b secx - tanx dx

= ln(sec x - tan x) - ln(sec x) + C

That's what I got and basically how I got the answer. The answer the book gives is

ln(1 + sinx x) + C

Am I missing something?
 
Re: Evalutating the Integral

skatru said:
I feel like I've evaluated this integral correctly but the answer in the book is different than what I am getting. Could you just inform me if I am right or if the book is right? Thanks.

ab1sinxcosxdx\displaystyle \int_a^b \frac{1 - sin x}{cosx} dx

ab1cosx(1sinx)dx\displaystyle \int_a^b \frac{1}{cosx}(1 - sinx) dx

ab1cosxsinxcosxdx\displaystyle \int_a^b \frac{1}{cosx} - \frac{sinx}{cosx} dx

absecxtanxdx\displaystyle \int_a^b secx - tanx dx

= ln(sec x - tan x) - ln(sec x) + C

That's what I got and basically how I got the answer. The answer the book gives is

ln(1 + sinx x) + C

Am I missing something?
You are both correct.
ln(sec(x)tan(x))ln(sec(x))=ln(sec(x)tan(x)sec(x))=ln(1+sin(x))\displaystyle \ln (\sec (x) - \tan (x)) - \ln (\sec (x)) = \ln \left( {\frac{{\sec (x) - \tan (x)}}{{\sec (x)}}} \right) = \ln \left( {1 + \sin (x)} \right)
 
Re: Evalutating the Integral

check it out ...

1sinxcosx1+sinx1+sinx=1sin2xcosx(1+sinx)=cos2xcosx(1+sinx)=cosx1+sinx\displaystyle \frac{1-\sin{x}}{\cos{x}} \cdot \frac{1+\sin{x}}{1+\sin{x}} = \frac{1 - \sin^2{x}}{\cos{x}(1 + \sin{x})} = \frac{\cos^2{x}}{\cos{x}(1+\sin{x})} = \frac{\cos{x}}{1+\sin{x}}

cosx1+sinxdx=ln(1+sinx)+C\displaystyle \int \frac{\cos{x}}{1+\sin{x}} \, dx = \ln(1 + \sin{x}) + C
 
Re: Evalutating the Integral

skatru said:
I feel like I've evaluated this integral correctly but the answer in the book is different than what I am getting. Could you just inform me if I am right or if the book is right? Thanks.

ab1sinxcosxdx\displaystyle \int_a^b \frac{1 - sin x}{cosx} dx

ab1cosx(1sinx)dx\displaystyle \int_a^b \frac{1}{cosx}(1 - sinx) dx

ab1cosxsinxcosxdx\displaystyle \int_a^b \frac{1}{cosx} - \frac{sinx}{cosx} dx

absecxtanxdx\displaystyle \int_a^b secx - tanx dx

= ln(sec x + tan x) - ln(sec x) + C<<<< Now it can convert to your book's answer.

That's what I got and basically how I got the answer. The answer the book gives is

ln(1 + sinx x) + C

Am I missing something?
 
Top