Expected Value

sammy1245

New member
Joined
Dec 8, 2009
Messages
3
A 5-card hand is dealt from a standard 52 card deck. If the hand contains at least one king, you win $10; otherwise you lose $1, what is the expected value of the game.

I'm not sure how to even start this one out.
Any help is greatly appreciated!
 
Hello, Sammy!

I must assume you know the Expected Value formula.
Then all we need are the probabilities.


A 5-card hand is dealt from a standard 52 card deck.
If the hand contains at least one King, you win $10; otherwise you lose $1.
What is the expected value of the game?

There are: (525)=2,598, ⁣960 possible hands.\displaystyle \text{There are: }\:{52\choose5} \,=\,2,598,\!960\text{ possible hands.}

To get no Kings, we must get 5 cards from the 48 Other cards,\displaystyle \text{To get }no\text{ Kings, we must get 5 cards from the 48 Other cards,}
. . There are: (485)=1,712,304 ways.\displaystyle \text{There are: }\,{48\choose5} \,=\,1,712,304\text{ ways.}

\(\displaystyle \text{Hence: }\:p(\text{no Kings}) \;\;=\;\;\frac{1,712,304}{2,598,960} \;\;=\;\;\frac{35,673}{54,145} \quad \hdots\text{ lose \$1}\)

\(\displaystyle \text{and: }\:p(\text{at least one King}) \;\;=\;\; 1-\frac{35,673}{54,145} \;\;=\;\;\frac{18,472}{54,145} \quad\hdots \text{ win \$10}\)


Therefore: EV    =    (18,47254,145)(+10)+(35,67354,145)(1)    =    149,04754,145    =    2.752738...\displaystyle \text{Therefore: }\:EV \;\;=\;\;\left(\frac{18,472}{54,145}\right)(+10) + \left(\frac{35,673}{54,145}\right)(-1) \;\;=\;\;\frac{149,047}{54,145}\;\;=\;\;2.752738...


You can expect to win an average of $2.75 per game.\displaystyle \text{You can expect to }win\text{ an average of \$2.75 per game.}

 
Top