L Luanne New member Joined Apr 9, 2007 Messages 4 Apr 17, 2007 #1 can someone help me solve this problem solve for (x,y) if: 2^x * 4^(2y)=64 4^(2x) * 2^y=8[/list][/code]
can someone help me solve this problem solve for (x,y) if: 2^x * 4^(2y)=64 4^(2x) * 2^y=8[/list][/code]
pka Elite Member Joined Jan 29, 2005 Messages 11,978 Apr 17, 2007 #2 \(\displaystyle \L\begin{array}{l} \left( {2^x } \right)\left( 4 \right)^{2y} = \left( {2^x } \right)\left( {2^2 } \right)^{2y} = \left( {2^x } \right)\left( {2^{4y} } \right) = 2^{x + 4y} \\ \left( 4 \right)^{2x} \left( {2^y } \right) = \left( {2^2 } \right)^{2x} \left( {2^y } \right) = \left( {2^{4x} } \right)\left( {2^y } \right) = 2^{4x + y} \\ \end{array}\)
\(\displaystyle \L\begin{array}{l} \left( {2^x } \right)\left( 4 \right)^{2y} = \left( {2^x } \right)\left( {2^2 } \right)^{2y} = \left( {2^x } \right)\left( {2^{4y} } \right) = 2^{x + 4y} \\ \left( 4 \right)^{2x} \left( {2^y } \right) = \left( {2^2 } \right)^{2x} \left( {2^y } \right) = \left( {2^{4x} } \right)\left( {2^y } \right) = 2^{4x + y} \\ \end{array}\)