Find a cubic function: max of 3 at x=-2, min of 0 at x=1

dangerous_dave

New member
Joined
Mar 13, 2008
Messages
21
I have another question :D
Find a cubic function that has a local maximum of 3 at x=-2 and a local minimum of 0 at x=1.

This one I don't even know how to start...

Thanks :)
 
Hello, dangerous_dave!

Find a cubic function that has a local maximum of 3 at x = -2
and a local minimum of 0 at x = 1.

The general cubic function is:   f(x)  =  ax3+bx2+cx+d\displaystyle \text{The general cubic function is: }\;f(x) \;=\;ax^3 + bx^2 + cx + d
. . and we must determine a,b,c,d.\displaystyle \text{and we must determine }a,b,c,d.

We know the point (-2,3) is on the cubic: .f(2)=3\displaystyle f(-2) \:=\:3
. . So we have: . 8a+4b2c+d=3\displaystyle -8a + 4b - 2c + d \:=\:3 . [1]

We know the point (1,0) is on the cubic: .f(1)=0\displaystyle f(1) \:=\:0
. . So we have: . a+b+c+d=0\displaystyle a + b + c + d \:=\:0 . [2]


The derivative is: . f(x)  =  3ax2+2bx+c\displaystyle f'(x) \;=\;3ax^2 + 2bx + c
The cubic has critical values at x=2,1\displaystyle x \:=\:-2,\:1
. . Hence, the derivative equals zero at those values.

. . f(-2)=0:    12a4b+c=0\displaystyle f'(\text{-}2) = 0:\;\;12a - 4b + c \:=\:0 . [3]
. . .f(1)=0:      3a+2b+c=0\displaystyle f(1) \:=\:0:\;\;\;3a + 2b + c \:=\:0 . [4]


We have a system of four equations.
. . Now solve for a,b,c,d.\displaystyle \text{Now solve for }a,b,c,d.

 
Top