Find logb[sqrt10b] given logb2=.3562 and logb5=0.8271

Bladesofhalo

New member
Joined
Sep 18, 2006
Messages
33
The problem states "Find logb[sqrt10b] given logb2=.3562 and logb5=0.8271.

So after rewriting, it would be:
b.3562=2
b.8271=5

Am I proceeding the right way? Do I have to solve using natural logarithms? Or am I looking at this problem completely the wrong way? I dont need the answer outright, just need a hint if possible.
 
Re: Logarithm problem

Bladesofhalo said:
The problem states "Find logb[sqrt10b] given logb2=.3562 and logb5=0.8271.

So after rewriting, it would be:
b.3562=2
b.8271=5

Am I proceeding the right way? Do I have to solve using natural logarithms? Or am I looking at this problem completely the wrong way? I dont need the answer outright, just need a hint if possible.

Is your problem:

Find Logb10b given Logb2 = 0.3562 and Logb5=0.8271\displaystyle Find \,\ Log_b\sqrt{10b}\,\ given \,\ Log_b2 \,\ = \,\ 0.3562\,\ and \,\ Log_b5 = 0.8271 ?
 
Re: Logarithm problem

Yes, sorry about not writing it more clearly.

And it should also read like this:
b[sup:3jwql0sn].3562[/sup:3jwql0sn]=2
b[sup:3jwql0sn].8271[/sup:3jwql0sn]=5
 
Re: Logarithm problem

Hello, Bladesofhalo!

This is an antiquated problem . . .


Find logb(10b), given: logb(2)=0.3562 and logb(5)=0.8271\displaystyle \text{Find }\log_b(\sqrt{10b}),\text{ given: }\,\log_b(2)\:=\:0.3562\,\text{ and }\,\log_b(5)\:=\:0.8271

We have:   logb(10b)\displaystyle \text{We have: }\;\log_b(\sqrt{10b})

. . =  logb(10b)12\displaystyle =\;\log_b(10b)^{\frac{1}{2}}

. . =  12logb(10b)\displaystyle =\; \frac{1}{2}\log_b(10b)

. . =  12[logb(10)+logb(b)]\displaystyle = \;\frac{1}{2}\bigg[\log_b(10) + \log_b(b)\bigg]

. . =  12[log(25)+1]\displaystyle =\;\frac{1}{2}\bigg[\log(2\cdot5) + 1\bigg]

. . =  12[logb(2)+logb(5)+1]\displaystyle = \;\frac{1}{2}\bigg[\log_b(2) + \log_b(5) + 1\bigg]

. . =  12[0.3562+0.8271+1]\displaystyle = \;\frac{1}{2}\bigg[0.3562 + 0.8271 + 1\bigg]

. . =  12[2.1833]\displaystyle = \;\frac{1}{2}\bigg[2.1833\bigg]

. . =  1.09165\displaystyle =\;1.09165

 
Top