Find simplified form of ratio: a_{n+1}/a_n w/ a_n = [5n (4n)!] / [2*4*6*...*(2n + 1)]

calculusIsKillingMe

New member
Joined
Dec 11, 2015
Messages
9
Ratio Test Calculus Question Please Help:

Consider the following series:

. . . . .\(\displaystyle \displaystyle \sum_{n = 1}^{\infty}\, \dfrac{5n\, (4n)!}{2\, \cdot\, 4\, \cdot\, 6\, \cdot\, ...\, \cdot\, (2n\, +\, 2)}\)

Find a simplified expression for the ratio:


. . . . .\(\displaystyle \dfrac{a_{n+1}}{a_n}\)

One area of this question that I find particularly confusing is the 2*4*6... I thought it could be represented as 2n! but that does not seem to be the case
 
Last edited by a moderator:
Ratio Test Calculus Question Please Help:

Consider the following series:

. . . . .\(\displaystyle \displaystyle \sum_{n = 1}^{\infty}\, \dfrac{5n\, (4n)!}{2\, \cdot\, 4\, \cdot\, 6\, \cdot\, ...\, \cdot\, (2n\, +\, 2)}\)

Find a simplified expression for the ratio:


. . . . .\(\displaystyle \dfrac{a_{n+1}}{a_n}\)

One area of this question that I find particularly confusing is the 2*4*6... I thought it could be represented as 2n! but that does not seem to be the case

2*4*6...(2n+2) = 2*1 * 2*2 * 2*3 *... * 2*(n+1) = [2*2*2 .... *(2)] * [1*2*3*... (n+1)] = ???

This is really simple algebraic manipulation!

What are your thoughts?

Please share your work with us ...even if you know it is wrong

If you are stuck at the beginning tell us and we'll start with the definitions.

You need to read the rules of this forum. Please read the post titled "Read before Posting" at the following URL:

http://www.freemathhelp.com/forum/announcement.php?f=33
 
Last edited by a moderator:
Ratio Test Calculus Question Please Help:

Consider the following series:

. . . . .\(\displaystyle \displaystyle \sum_{n = 1}^{\infty}\, \dfrac{5n\, (4n)!}{2\, \cdot\, 4\, \cdot\, 6\, \cdot\, ...\, \cdot\, (2n\, +\, 2)}\)

Find a simplified expression for the ratio:


. . . . .\(\displaystyle \dfrac{a_{n+1}}{a_n}\)

One area of this question that I find particularly confusing is the 2*4*6... I thought it could be represented as 2n! but that does not seem to be the case
When the pattern is given to you, explicitly, as "2*4*6*...*(2n + 2)", why would you think that the pattern would be "2*4*6*...*(2n)"? :shock:
 
Originally Posted by calculusIsKillingMe Ratio Test Calculus Question Please Help:

Consider the following series:

. . . . .[FONT=MathJax_Size2]∑[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]∞[/FONT][FONT=MathJax_Main]5[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]![/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]⋅[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]⋅[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]⋅[/FONT][FONT=MathJax_Main].[/FONT][FONT=MathJax_Main].[/FONT][FONT=MathJax_Main].[/FONT][FONT=MathJax_Main]⋅[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main])[/FONT]



Find a simplified expression for the ratio:


. . . . .[FONT=MathJax_Math]a[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Math]n[/FONT]

One area of this question that I find particularly confusing is the 2*4*6... I thought it could be represented as 2n! but that does not seem to be the case
2*4*6...(2n+2) = 2*1 * 2*2 * 2*3 *... * 2*(n+1) = [2*2*2 .... *(2)] * [1*2*3*... (n+1)] = ???
No response from OP in 48 hrs.

2*4*6...(2n+2) = 2*1 * 2*2 * 2*3 *... * 2*(n+1) = [2*2*2 .... *(2)] * [1*2*3*... (n+1)] = 2(n+1) * {(n+1)!}

an = [FONT=MathJax_Main]5[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]![/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]⋅[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]⋅[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]⋅[/FONT][FONT=MathJax_Main].[/FONT][FONT=MathJax_Main].[/FONT][FONT=MathJax_Main].[/FONT][FONT=MathJax_Main]⋅[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main])[/FONT]
\(\displaystyle \displaystyle{a_n \ = \ \dfrac{5*n*(4*n!)}{2^{n+1}(n+1)!}}\)

\(\displaystyle \displaystyle{a_{n+1} \ = \ \dfrac{5 * (n+1) * [4 * (n+1)!]}{2^{n+2}(n+2)!}}\)

\(\displaystyle \displaystyle{\dfrac{a_{n+1}}{a_n} \ = \ \dfrac{5 * (n+1) * [4 * (n+1)!]}{5*n*(4*n!)} * \dfrac{2^{n+1}(n+1)!}{2^{n+2}(n+2)!}}\)

\(\displaystyle \displaystyle{\dfrac{a_{n+1}}{a_n} \ = \ \dfrac{(n+1)^2}{n} * \dfrac{1}{2(n+2)}}\)
 
Ratio Test Calculus Question Please Help:

Consider the following series:

. . . . .\(\displaystyle \displaystyle \sum_{n = 1}^{\infty}\, \dfrac{5n\, (4n)!}{2\, \cdot\, 4\, \cdot\, 6\, \cdot\, ...\, \cdot\, (2n\, +\, 2)}\)

Find a simplified expression for the ratio:


. . . . .\(\displaystyle \dfrac{a_{n+1}}{a_n}\)

One area of this question that I find particularly confusing is the 2*4*6... I thought it could be represented as 2n! but that does not seem to be the case
If n=4, then (2n)!= 8!= 1*2*3*4*5*6*7*8. As already pointed out, you can simply factor out the 2's. For the record, you do know that basic algebra is a pre-requiste for calculus?
 
Top