A Ashley5 New member Joined Nov 3, 2007 Messages 14 Nov 3, 2007 #1 find the absolute max and min of f(x)= e^x/x in [1/2,3] I started taking the derivative but I don't know how to finish it. Anything will be helpful. Thank you!! f'(x)= (x)e^x-e^x(1)/x^2
find the absolute max and min of f(x)= e^x/x in [1/2,3] I started taking the derivative but I don't know how to finish it. Anything will be helpful. Thank you!! f'(x)= (x)e^x-e^x(1)/x^2
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Nov 3, 2007 #2 Re: find the absolute max and min Hello, Ashley! I guess you need an Algebra Review . . . Find the absolute maximum and minimum of: \(\displaystyle \L\,f(x)\:=\:\frac{e^x}{x}\,\) on [½, 3] Click to expand... The derivative is: \(\displaystyle \L\:y' \;=\;\frac{x\cdot e^x \,-\,e^x\cdot1}{x^2} \;=\;\frac{e^x(x\,-\,1)}{x^2}\) If \(\displaystyle y'\,=\,0\), we have: \(\displaystyle \:x\,-\,1\:=\:0\;\;\Rightarrow\;\;x\,=\,1\) . . Then: \(\displaystyle \,y \:=\:\frac{e^1}{1} \:\approx\:2.718\) Test the endpoints . . . At \(\displaystyle x\,=\,\frac{1}{2}\), we have: \(\displaystyle \:y \:=\:\frac{e^{\frac{1}{2}}}{\frac{1}{2}} \:\approx\:3.297\) At \(\displaystyle x\,=\,3\), we have: \(\displaystyle \:y \:=\:\frac{e^3}{3} \:\approx\:6.695\) Therefore: \(\displaystyle \:\begin{array}{cc}\text{The absolute maximum is: }& \left(3,\:\frac{e^3}{3}\right) \\ \\ \\ \text{The absolute minimum is: } & \left(1,\:e\right) \end{array}\)
Re: find the absolute max and min Hello, Ashley! I guess you need an Algebra Review . . . Find the absolute maximum and minimum of: \(\displaystyle \L\,f(x)\:=\:\frac{e^x}{x}\,\) on [½, 3] Click to expand... The derivative is: \(\displaystyle \L\:y' \;=\;\frac{x\cdot e^x \,-\,e^x\cdot1}{x^2} \;=\;\frac{e^x(x\,-\,1)}{x^2}\) If \(\displaystyle y'\,=\,0\), we have: \(\displaystyle \:x\,-\,1\:=\:0\;\;\Rightarrow\;\;x\,=\,1\) . . Then: \(\displaystyle \,y \:=\:\frac{e^1}{1} \:\approx\:2.718\) Test the endpoints . . . At \(\displaystyle x\,=\,\frac{1}{2}\), we have: \(\displaystyle \:y \:=\:\frac{e^{\frac{1}{2}}}{\frac{1}{2}} \:\approx\:3.297\) At \(\displaystyle x\,=\,3\), we have: \(\displaystyle \:y \:=\:\frac{e^3}{3} \:\approx\:6.695\) Therefore: \(\displaystyle \:\begin{array}{cc}\text{The absolute maximum is: }& \left(3,\:\frac{e^3}{3}\right) \\ \\ \\ \text{The absolute minimum is: } & \left(1,\:e\right) \end{array}\)