Find the inverse function -- my problem

lookagain

Elite Member
Joined
Aug 22, 2010
Messages
3,259
Given f(x)=1x1+x.\displaystyle f(x) = \frac {1- \sqrt{x}}{1 + \sqrt{x}}.


Find its inverse.
 
Given: y = f(x) = 1x1+x, x  0, find its inverse.\displaystyle Given: \ y \ = \ f(x) \ = \ \frac{1-\sqrt x}{1+\sqrt x}, \ x \ \ge \ 0, \ find \ its \ inverse.

To find inverse, alternate variables and solve for y.\displaystyle To \ find \ inverse, \ alternate \ variables \ and \ solve \ for \ y.

Hence, x = 1y1+y.\displaystyle Hence, \ x \ = \ \frac{1-\sqrt y}{1+\sqrt y}.

x+xy = 1y, xy+y = 1x, y = 1x1+x, y = (1x1+x)2\displaystyle x+x\sqrt y \ = \ 1-\sqrt y, \ x\sqrt y+\sqrt y \ = \ 1-x, \ \sqrt y \ = \ \frac{1-x}{1+x}, \ y \ = \ \bigg(\frac{1-x}{1+x}\bigg)^2

Ergo f(x) = 1x1+x and f1(x) = (1x1+x)2, 1 <x  1, see graph.\displaystyle Ergo \ f(x) \ = \ \frac{1-\sqrt x}{1+\sqrt x} \ and \ f^{-1}(x) \ = \ \bigg(\frac{1-x}{1+x}\bigg)^2, \ -1 \ < \\x \ \le \ 1, \ see \ graph.

[attachment=0:bje8o0xr]ccc.jpg[/attachment:bje8o0xr]
 

Attachments

  • ccc.jpg
    ccc.jpg
    24 KB · Views: 98
BigGlenntheHeavy said:
Given: y = f(x) = 1x1+x, x  0, find its inverse.\displaystyle Given: \ y \ = \ f(x) \ = \ \frac{1-\sqrt x}{1+\sqrt x}, \ x \ \ge \ 0, \ find \ its \ inverse.



Ergo f(x) = 1x1+x and f1(x) = (1x1+x)2, x  0, see graph.\displaystyle Ergo \ f(x) \ = \ \frac{1-\sqrt x}{1+\sqrt x} \ and \ f^{-1}(x) \ = \ \bigg(\frac{1-x}{1+x}\bigg)^2, \ x \ \ge \ 0, \ see \ graph.

The original function doesn't need "x0"\displaystyle "x \ge 0" because the x\displaystyle \sqrt{x} already limits
it to that, and the original function is already a one-to-one function.

The domain of the inverse is the range of the original. The range of the original function is
(1,1],\displaystyle (-1, 1], as y=1\displaystyle y = -1 is a horizontal asymptote, and the largest y-value occurs on the
extreme left-hand side. That largest function value is where y=1\displaystyle y = 1 at x=0\displaystyle x = 0
for the original function.

f1(x) = (1x1+x)2,  1< x  1.\displaystyle f^{-1}(x) \ = \ \bigg(\frac{1-x}{1+x}\bigg)^2, \ \ -1 <\ x \ \le \ 1.
 
Thank you lookagain for keeping me honest; I stand corrected.\displaystyle Thank \ you \ lookagain \ for \ keeping \ me \ honest; \ I \ stand \ corrected.

The domain of f1(x) is 1  < x  1, not x  0.\displaystyle The \ domain \ of \ f^{-1}(x) \ is \ -1 \ \ < \ x \ \le \ 1, \ not \ x \ \ge \ 0.

Note: I edited my original reply above to avoid any future mathematician\displaystyle Note: \ I \ edited \ my \ original \ reply \ above \ to \ avoid \ any \ future \ mathematician

from being mislead.\displaystyle from \ being \ mislead.
 
If you are looking for the inverse of g(x), none exist as g(x) is not 1to1.\displaystyle If \ you \ are \ looking \ for \ the \ inverse \ of \ g(x), \ none \ exist \ as \ g(x) \ is \ not \ 1-to-1.
 
jengodbout said:


g(x) = 1 - x^2

This function definition does not comprise an exercise.

How do I solve this?

There is nothing to solve, until you tell us what you are asked to do with function g.



You posted your function definition at the end of somebody else's discussion.

Please start your own thread, and read the post titled, "Read Before Posting".

Cheers ~ Mark 8-)

 
Sorry, Very new at this. Not a blogger. Just trying ot get some much needed math help.
 
jengodbout said:
Sorry, Very new at this. Not a blogger. Just trying ot get some much needed math help.

Start a new thread , and ask your question.
 
Top