\(\displaystyle \displaystyle \lim_{x\, \rightarrow\, 1}\,\)\(\displaystyle \dfrac{\dfrac{1}{x}\, -\, 1}{\sqrt{\strut x\,}\, -\, 1}\)
the answer is 2 but i cannot get it:
. . . . .\(\displaystyle \dfrac{\dfrac{1}{x}\, -\, 1}{\sqrt{\strut x\,}\, -\, 1}\, \Rightarrow \, \dfrac{\dfrac{1}{x}\, -\, \dfrac{x}{x}}{\sqrt{\strut x\,}\, -\, 1}\, \Rightarrow\, \left(\,\dfrac{\left(\dfrac{1\, -\, x}{x}\right)}{\sqrt{\strut x\,}\, -\, 1}\,\right)\,\left(\dfrac{x}{x}\right)\, \Rightarrow\, \dfrac{1\, -\, x}{x\,\sqrt{\strut x\,}\, -\, 1}\)
. . . . .\(\displaystyle \Rightarrow\, \dfrac{1\, -\, x}{x\, \left(\sqrt{\strut x\,}\, -\, 1\right)}\, \Rightarrow\,\dfrac{1\, -\, x}{x\,\sqrt{\strut x\,}\, -\, x}\, \left(\, \dfrac{\left(x\, \sqrt{\strut x\,}\, +\, x\right)}{\left(x\, \sqrt{\strut x\,}\, +\, x\right)}\, \right)\, \Rightarrow\, \dfrac{x\, \sqrt{\strut x\,}\, +\, x\, -\, x^2\, \sqrt{\strut x\,}\, -\, x^2}{x^3\, +\, x^2\, \sqrt{\strut x\,}\, -\, x^2\, \sqrt{\strut x\,}\, -\, x^2}\)
. . . . .\(\displaystyle \Rightarrow\, \dfrac{x\, \sqrt{\strut x\,}\, +\, x\, -\, x^2\, \sqrt{\strut x\,}\, -\, x^2}{x^3\, -\, x^2}\, \Rightarrow\, \dfrac{x\, \sqrt{\strut x\,}\, +\, x\, -\, x^2\, \sqrt{\strut x\,}\, -\, x^2}{x}\)
. . . . .\(\displaystyle \displaystyle \lim_{x\, \rightarrow\, 1}\,\)\(\displaystyle \dfrac{x\, \sqrt{\strut x\,}\, +\, x\, -\, x^2\, \sqrt{\strut x\,}\, -\, x^2}{x}\, \Rightarrow\, \dfrac{1\, +\, 1\, -\, 1\, -\, 1}{1}\, =\, 0\)
I have tried multiplying conjugates/ lcd/ variations of both.
the answer is 2 but i cannot get it:
. . . . .\(\displaystyle \dfrac{\dfrac{1}{x}\, -\, 1}{\sqrt{\strut x\,}\, -\, 1}\, \Rightarrow \, \dfrac{\dfrac{1}{x}\, -\, \dfrac{x}{x}}{\sqrt{\strut x\,}\, -\, 1}\, \Rightarrow\, \left(\,\dfrac{\left(\dfrac{1\, -\, x}{x}\right)}{\sqrt{\strut x\,}\, -\, 1}\,\right)\,\left(\dfrac{x}{x}\right)\, \Rightarrow\, \dfrac{1\, -\, x}{x\,\sqrt{\strut x\,}\, -\, 1}\)
. . . . .\(\displaystyle \Rightarrow\, \dfrac{1\, -\, x}{x\, \left(\sqrt{\strut x\,}\, -\, 1\right)}\, \Rightarrow\,\dfrac{1\, -\, x}{x\,\sqrt{\strut x\,}\, -\, x}\, \left(\, \dfrac{\left(x\, \sqrt{\strut x\,}\, +\, x\right)}{\left(x\, \sqrt{\strut x\,}\, +\, x\right)}\, \right)\, \Rightarrow\, \dfrac{x\, \sqrt{\strut x\,}\, +\, x\, -\, x^2\, \sqrt{\strut x\,}\, -\, x^2}{x^3\, +\, x^2\, \sqrt{\strut x\,}\, -\, x^2\, \sqrt{\strut x\,}\, -\, x^2}\)
. . . . .\(\displaystyle \Rightarrow\, \dfrac{x\, \sqrt{\strut x\,}\, +\, x\, -\, x^2\, \sqrt{\strut x\,}\, -\, x^2}{x^3\, -\, x^2}\, \Rightarrow\, \dfrac{x\, \sqrt{\strut x\,}\, +\, x\, -\, x^2\, \sqrt{\strut x\,}\, -\, x^2}{x}\)
. . . . .\(\displaystyle \displaystyle \lim_{x\, \rightarrow\, 1}\,\)\(\displaystyle \dfrac{x\, \sqrt{\strut x\,}\, +\, x\, -\, x^2\, \sqrt{\strut x\,}\, -\, x^2}{x}\, \Rightarrow\, \dfrac{1\, +\, 1\, -\, 1\, -\, 1}{1}\, =\, 0\)
I have tried multiplying conjugates/ lcd/ variations of both.
Last edited by a moderator: