If
n2+204n=m2 then
(n+102)2=m2+1022Thus for natural
k,u,v:
102=2kuv,m=k(v2−u2)We can safely assume that
u <v and get these 4 cases:
k11317u1311v5117173m2600280864136n250019676868
Another variant:
102=k(v2−u2)m=2kuv
does not produce any new solutions. Here
v2−u2 must be odd or divisible by 4, but 102 is not divisible by 4, thus
k=2 and
v2−u2=(v−u)(v+u)=51.
k22v−u13v+u5117u257v2610m2600280n2500196