find the middle term of the expanded form of (2x - 4y^2)^4
S Sham New member Joined Nov 13, 2006 Messages 8 Dec 16, 2006 #1 find the middle term of the expanded form of (2x - 4y^2)^4
tkhunny Moderator Staff member Joined Apr 12, 2005 Messages 11,339 Dec 16, 2006 #2 You can just write them down... (a+b)^4 will have 5 terms, the pieces of which are: 4!, 0!, 4!,a^4, b^0 4!, 1!, 3!, a^3, b^1 4!, 2!, 2!, a^2, b^2 4!, 3!, 1!, a^1, b^3 4!, 4!, 0!, a^0, b^4 It's ALWAYS the same. Look at those nice, beautiful patterns.
You can just write them down... (a+b)^4 will have 5 terms, the pieces of which are: 4!, 0!, 4!,a^4, b^0 4!, 1!, 3!, a^3, b^1 4!, 2!, 2!, a^2, b^2 4!, 3!, 1!, a^1, b^3 4!, 4!, 0!, a^0, b^4 It's ALWAYS the same. Look at those nice, beautiful patterns.
S snaper New member Joined Dec 16, 2006 Messages 8 Dec 17, 2006 #3 (2x-4y^2)^4.... p=4/2=2 middle term....c(4,p).(2x)^2.(4y^2)^2 ... C(4,2)=4!/2!.2!=6 6.4x^2.16y^4 ........ + ( 384.x^2.y^4)-........
(2x-4y^2)^4.... p=4/2=2 middle term....c(4,p).(2x)^2.(4y^2)^2 ... C(4,2)=4!/2!.2!=6 6.4x^2.16y^4 ........ + ( 384.x^2.y^4)-........
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Dec 18, 2006 #4 Re: find the middle term of the expanded form of (2x - 4y^2) Hello, Sham! Find the middle term of the expanded form of (2x − 4y2)4\displaystyle (2x\,-\,4y^2)^4(2x−4y2)4 Click to expand... The very worst you can do is multiply it out and look at the middle term . . . If you're familiar with the Binomial Theorem, we have: (2x − 4y)4 = (2x)4 + (43)(2x)3(−4y2) + (42)(2x)2(−4y2)2⏟middle term + (41)(2x)(−4y)3 + (−4y)4\displaystyle (2x\,-\,4y)^4\;=\;(2x)^4\,+\,{4\choose3}(2x)^3(-4y^2) \,+\,\underbrace{{4\choose2}(2x)^2(-4y^2)^2}_{\text{middle term}}\,+\,{4\choose1}(2x)(-4y)^3\,+\,(-4y)^4(2x−4y)4=(2x)4+(34)(2x)3(−4y2)+middle term(24)(2x)2(−4y2)2+(14)(2x)(−4y)3+(−4y)4 Then: \(\displaystyle \:{4\choose2}(2x)^2(-4y^2)^2\;=\;6(4x^2)(16y^4) \;=\;\fbox{384x^2y^4}\)
Re: find the middle term of the expanded form of (2x - 4y^2) Hello, Sham! Find the middle term of the expanded form of (2x − 4y2)4\displaystyle (2x\,-\,4y^2)^4(2x−4y2)4 Click to expand... The very worst you can do is multiply it out and look at the middle term . . . If you're familiar with the Binomial Theorem, we have: (2x − 4y)4 = (2x)4 + (43)(2x)3(−4y2) + (42)(2x)2(−4y2)2⏟middle term + (41)(2x)(−4y)3 + (−4y)4\displaystyle (2x\,-\,4y)^4\;=\;(2x)^4\,+\,{4\choose3}(2x)^3(-4y^2) \,+\,\underbrace{{4\choose2}(2x)^2(-4y^2)^2}_{\text{middle term}}\,+\,{4\choose1}(2x)(-4y)^3\,+\,(-4y)^4(2x−4y)4=(2x)4+(34)(2x)3(−4y2)+middle term(24)(2x)2(−4y2)2+(14)(2x)(−4y)3+(−4y)4 Then: \(\displaystyle \:{4\choose2}(2x)^2(-4y^2)^2\;=\;6(4x^2)(16y^4) \;=\;\fbox{384x^2y^4}\)