Finding and classifying critical points?

allhalf425

New member
Joined
Oct 19, 2009
Messages
6
How would I find and classify the critical points of a function as follows...

Find and classify the critical points of

z = f(x, y) = x[sup:3alyxftz]2[/sup:3alyxftz] - 2xy + y[sup:3alyxftz]3[/sup:3alyxftz] - y
 
allhalf425 said:
How would I find and classify the critical points of a function as follows...

Find and classify the critical points of

z = f(x, y) = x[sup:4n7k91er]2[/sup:4n7k91er] - 2xy + y[sup:4n7k91er]3[/sup:4n7k91er] - y

First, you need to know the definition of a critical point of a function.

Please share your work with us, indicating exactly where you are stuck - so that we know where to begin to help you.
 
Hello, allhalf425!

Find and classify the critical points of   f(x,y)  =  x22xy+y3y\displaystyle \text{Find and classify the critical points of }\;f(x,y) \;=\;x^2 - 2xy + y^3 - y

Set the two partial derivatives equal to zero and solve.

. . fx  =  2x2y=0y=x    [1]\displaystyle f_x \;=\;2x-2y \:=\:0 \quad\Rightarrow\quad y \:=\:x\;\;[1]

. . fy=2x+3y21=0    [2]\displaystyle f_y \:=\:-2x + 3y^2 - 1 \:=\:0\;\;[2]


Substitute [1] into [2]:   2x+3x21=03x22x1=0\displaystyle \text{Substitute [1] into [2]: }\;2x + 3x^2 - 1 \:=\:0 \quad\Rightarrow\quad 3x^2 - 2x - 1 \:=\:0

\(\displaystyle {\text{Factor: }\;(x-1)(3x+1) \:=\:0\)

And we have:   {x1=0x=13x+1=0x=-13}\displaystyle \text{And we have: }\;\begin{Bmatrix}x-1 \:=\:0 & \Rightarrow & x \:=\:1 \\ 3x+1\:=\:0 & \Rightarrow & x \:=\:\text{-}\frac{1}{3} \end{Bmatrix}

Then:   {y=1y=-13}{f=-1f=527}\displaystyle \text{Then: }\;\begin{Bmatrix}y \:=\:1 \\ y \:=\:\text{-}\tfrac{1}{3} \end{Bmatrix} \quad\Rightarrow\quad \begin{Bmatrix}f \:=\:\text{-}1 \\ f \:=\:\frac{5}{27} \end{Bmatrix}



Second Partials Test

fxx=2,fyy=6y,fxy=2\displaystyle f_{xx} \:=\:2,\quad f_{yy} \:=\:6y,\quad f_{xy} \:=\:-2

Then:   D  =  (fxx)(fyy)(fxy)2  =  (2)(6y)(2)2  =  12y4  =  4(y3)\displaystyle \text{Then: }\;D \;=\;(f_{xx})(f_{yy}) - (f_{xy})^2 \;=\;(2)(6y) - (-2)^2 \;=\;12y - 4 \;=\;4(y-3)


\(\displaystyle \text{At }(1,1)\!:\;\;D \:=\:4(1-3) \:=\:-8 \quad\hdots \text{ negative: saddle point at }(1,1,\text{-}1)\)

\(\displaystyle \text{At }\left(\text{-}\tfrac{1}{3},\text{-}\tfrac{1}{3}\right)\!:\;\;D \;=\;4\left(\text{-}\tfrac{1}{3} - 3\ritght) \:=\:\text{-}\tfrac{40}{3}\quad\hdots\text{ negative: saddle point at }\left(-\tfrac{1}{3},\text{-}\tfrac{1}{3},\tfrac{5}{27}\right)\)

 
What its graph looks like.

[attachment=0:1wy51hgr]zzz.gif[/attachment:1wy51hgr]
 

Attachments

  • zzz.gif
    zzz.gif
    309.1 KB · Views: 43
Top