\(\displaystyle \mbox{16. Find the an}\)\(\displaystyle \mbox{gle between the lines:}\)
. . .\(\displaystyle \mbox{(a) }\, x\, -\, 3\, =\, 2\, -\, y,\, z\, =\, 1,\, \mbox{ and }\, x\, =\, -3,\, y\, +\, 2\, =\, z\, -\, 5\)
My work:
\(\displaystyle \mbox{Let }\, x\, -\, 3\, =\, t.\)
⎝⎛xyz⎠⎞=⎝⎛321⎠⎞+t⎝⎛1−10⎠⎞
\(\displaystyle \mbox{Let }\, y\, + \,2 \,=\, s.\)
⎝⎛xyz⎠⎞=⎝⎛−3−25⎠⎞+s⎝⎛011⎠⎞
\(\displaystyle \left(\begin{array}{c}1\\-1\\0 \end{array}\right)\, \cdot\, \left(\begin{array}{c}0\\1\\1 \end{array}\right)\, =\, \sqrt{\strut 1^2\, +\, (-1)^2\,}\, \times\, \sqrt{\strut 1^2\, +\, 1^2\, }\, \cos(\theta)\)
\(\displaystyle -1\, =\, \sqrt{\strut 2\,}\, \times\, \sqrt{\strut 2\,}\, \cos(\theta)\)
cos(θ)=−21
θ=32π
So, the answer I get is 2pi/3 but the answer says pi/3
are we just supposed to pick the acute angle complement?
. . .\(\displaystyle \mbox{(a) }\, x\, -\, 3\, =\, 2\, -\, y,\, z\, =\, 1,\, \mbox{ and }\, x\, =\, -3,\, y\, +\, 2\, =\, z\, -\, 5\)
My work:
\(\displaystyle \mbox{Let }\, x\, -\, 3\, =\, t.\)
⎝⎛xyz⎠⎞=⎝⎛321⎠⎞+t⎝⎛1−10⎠⎞
\(\displaystyle \mbox{Let }\, y\, + \,2 \,=\, s.\)
⎝⎛xyz⎠⎞=⎝⎛−3−25⎠⎞+s⎝⎛011⎠⎞
\(\displaystyle \left(\begin{array}{c}1\\-1\\0 \end{array}\right)\, \cdot\, \left(\begin{array}{c}0\\1\\1 \end{array}\right)\, =\, \sqrt{\strut 1^2\, +\, (-1)^2\,}\, \times\, \sqrt{\strut 1^2\, +\, 1^2\, }\, \cos(\theta)\)
\(\displaystyle -1\, =\, \sqrt{\strut 2\,}\, \times\, \sqrt{\strut 2\,}\, \cos(\theta)\)
cos(θ)=−21
θ=32π
So, the answer I get is 2pi/3 but the answer says pi/3
are we just supposed to pick the acute angle complement?
Attachments
Last edited by a moderator: