Finding the equation of an exponential function from a table

smileyface497

New member
Joined
Oct 11, 2010
Messages
9
Given the table

t | h(t)
0.0 | 2.04
1.0 | 3.06
2.0 | 4.59
3.0 | 6.89
4.0 | 10.33
5.0 | 15.49

find the equation of the exponential function.

How would I go about doing this?
 
Re: Finding the equation of an exponential function from a t

smileyface497 said:
Given the table

t | h(t)
0.0 | 2.04
1.0 | 3.06
2.0 | 4.59
3.0 | 6.89
4.0 | 10.33
5.0 | 15.49

find the equation of the exponential function.

How would I go about doing this?

Assume:

f(t) = A  eBt\displaystyle f(t) \ = \ A \ * \ e^{B*t}
 
Re: Finding the equation of an exponential function from a t

Hello, smileyface497!

Given the table:

. . th(t)0.02.041.03.062.04.593.06.894.010.335.015.49\displaystyle \begin{array}{c|c} t & h(t) \\ \hline 0.0 & 2.04 \\ 1.0 & 3.06 \\ 2.0 & 4.59 \\ 3.0 & 6.89 \\ 4.0 & 10.33 \\ 5.0 & 15.49 \end{array}

Find the equation of the exponential function.

The general exponential function would be:   h(t)  =  abt+c\displaystyle \text{The general exponential function would be: }\;h(t) \;=\;a\cdot b^{t} + c


From the first four values of the table, we have:

. . h(0)=2.04a+c=2.4[1]h(1)=3.06ab+c=3.06[2]h(2)=4.59ab2+c=4.59[3]h(3)=6.89ab3+c=6.89[4]\displaystyle \begin{array}{cccccccc}h(0)\:=\:2.04 & a + c &=& 2.4 & [1] \\ h(1) \:=\: 3.06 & a\cdot b + c &=& 3.06 & [2] \\ h(2) \:=\:4.59 & a\cdot b^2 + c &=& 4.59 & [3] \\ h(3) \:=\:6.89 & a\cdot b^3 + c &=& 6.89 & [4] \end{array}


Subtract [2] - [1]:aba=1.02a(b1)=1.02[5]Subtract [3] - [2]:ab2ab=1.53ab(b1)=1.53[6]Subtract [4] - [3]:ab3ab2=2.30ab2(b1)=2.30[7]\displaystyle \begin{array}{cccccccccc}\text{Subtract [2] - [1]:} & ab - a &=& 1.02 & \Rightarrow & a(b-1) &=& 1.02 & [5] \\ \text{Subtract [3] - [2]:} & ab^2 - ab &=& 1.53 & \Rightarrow & ab(b-1) &=& 1.53 & [6] \\ \text{Subtract [4] - [3]:} & ab^3 - ab^2 &=& 2.30 & \Rightarrow & ab^2(b-1) &=& 2.30 & [7] \end{array}


\(\displaystyle \begin{array}{cccccccccc} \text{Divide [6] by [5]:} & \dfrac{ab(b-1)}{a(b-1)} &=& \dfrac{1.53}{1.02} & \Rightarrow & b &=& 1.5\qquad \\ \\[-3mm] \text{Divide [7] by [6]:} & \dfrac{ab^2(b-1)}{ab(b-1)} &=& \dfrac{2.30}{1.53} & \Rightarrow & b &=& 1.495... \end{array} \;\; \Rightarrow\quad \boxed{b \;\approx\;1.5}\)


Substitute into [2]:1.5a+d=3.06[8]Substitute into [3]:2.25a+d=4.59[9]\displaystyle \begin{array}{cccccccc}\text{Substitute into [2]:} & 1.5a + d &=& 3.06 & [8] \\ \text{Substitute into [3]:} & 2.25a + d &=& 4.59 & [9] \end{array}

Subtract [9] - [8]:   0.75a=1.53a=2.04\displaystyle \text{Subtract [9] - [8]: } \;0.75a \:=\:1.53 \quad\Rightarrow\quad \boxed{a \:=\:2.04}


Substitute into [1]:   2.04+c=2.04c=0\displaystyle \text{Substitute into [1]: }\;2.04 + c \:=\:2.04 \quad\Rightarrow\quad \boxed{c \:=\:0}


. . Therefore:   h(t)  =  2.04(1.5)t\displaystyle \text{Therefore: }\;h(t) \;=\;2.04\,(1.5)^t

 
Re: Finding the equation of an exponential function from a t

Thank you, thank you! I would have never gotten that by myself.
 
Top