Finding the sum of an infinite series involving logs

dragoon7201

New member
Joined
Apr 13, 2015
Messages
5
∑ln(1-1/(n+1)²)

where n goes from 1 to infinity
I broke the log into 3 parts
ln(n+2) + ln(n) - 2ln(n+1)

but then i don't know how to find the sum of the series.
Can someone enlighten me please
 
Last edited:
Just to be sure we're on the same page, the problem you were given is as follows, correct?

n=1ln(11(x1)2)\displaystyle \sum _{n=1}^{\infty }\:ln\left(1-\frac{1}{\left(x-1\right)^2}\right)
 
Yes, that is right, except it is (n+1) not minus 1 . Sorry I couldn't get word to paste properly
 
Notice that all terms are negative and increasing with 0 as the limit of the a_n's, so the integral test will work. It needs to be done by parts and this might be unnecessary for you.

Otherwise, if you know it, the inequality ln(1+t) <= t may be of benefit. Or you can show that ln(1-1/(n+1)^2)/(-1/(n+1)^2) -> 1
 
I think you're on the right track with ln(n+2) + ln(n) - 2ln(n+1) altho not sure how you got there from n(1-1/(n+1)²). Regardless,

sum of ln(n+2) + ln(n) - 2ln(n+1) form n=1 to n= infinity

is the same as:

sum of ln(n) from n=3 to n= infinity
+ sum of ln(n) from n=1 to n= infinity
- sum of ln(n) from n=2 to n= infinity
- sum of ln(n) from n=2 to n= infinity

which is the same as:

sum of ln(n) from n=3 to n= infinity
+ ln(1) + ln(2) + sum of ln(n) from n=3 to n= infinity
- ln(2) - sum of ln(n) from n=3 to n= infinity
- ln(2) - sum of ln(n) from n=3 to n= infinity

and a lot of stuff cancels leaving us with:

ln(1) - ln(2)
 
Hello, dragoon7201!

I agree with MathildaApp.


Evaluate: S  =  n=1ln[11(n+1)2]\displaystyle \displaystyle \text{Evaluate: }\:S \;=\; \sum^{\infty}_{n=1}\ln\left[1 - \frac{1}{(n+1)^2}\right]

Note that:   11(n+1)2  =  (n+1)21(n+1)2  =  n2+2n(n+1)2  =  n(n+2)(n+1)2\displaystyle \;\displaystyle 1 - \frac{1}{(n+1)^2} \;=\;\frac{(n+1)^2-1}{(n+1)^2} \;=\; \frac{n^2+2n }{(n+1)^2}\;=\; \frac{n(n+2)}{(n+1)^2}

Hence:   S  =  n=1ln[n(n+2)(n+1)2]\displaystyle \;\displaystyle S \;=\;\sum^{\infty}_{n=1}\ln\left[\frac{n(n+2)}{(n+1)^2}\right]

. . . S  =  ln1322+ln2432+ln3542+ln4652+\displaystyle \displaystyle S \;=\;\ln\frac{1\cdot3}{2^2} + \ln\frac{2\cdot4}{3^2} + \ln\frac{3\cdot5}{4^2} + \ln\frac{4\cdot6}{5^2} + \cdots

. . .S  =  ln(1322243235424652+)\displaystyle \displaystyle S \;=\; \ln\left(\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2} \cdot \frac{3\cdot5}{4^2}\cdot\frac{4\cdot6}{5^2} + \cdots \right)


We find that everything cancels except the initial 12\displaystyle \frac{1}{2}

Therefore:   S=ln(12)\displaystyle \;S \:=\:\ln\left(\frac{1}{2}\right)


 
Hello, dragoon7201!

I agree with MathildaApp.



Note that:   11(n+1)2  =  (n+1)21(n+1)2  =  n2+2n(n+1)2  =  n(n+2)(n+1)2\displaystyle \;\displaystyle 1 - \frac{1}{(n+1)^2} \;=\;\frac{(n+1)^2-1}{(n+1)^2} \;=\; \frac{n^2+2n }{(n+1)^2}\;=\; \frac{n(n+2)}{(n+1)^2}

Hence:   S  =  n=1ln[n(n+2)(n+1)2]\displaystyle \;\displaystyle S \;=\;\sum^{\infty}_{n=1}\ln\left[\frac{n(n+2)}{(n+1)^2}\right]

. . . S  =  ln1322+ln2432+ln3542+ln4652+\displaystyle \displaystyle S \;=\;\ln\frac{1\cdot3}{2^2} + \ln\frac{2\cdot4}{3^2} + \ln\frac{3\cdot5}{4^2} + \ln\frac{4\cdot6}{5^2} + \cdots

. . .S  =  ln(1322243235424652+)\displaystyle \displaystyle S \;=\; \ln\left(\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2} \cdot \frac{3\cdot5}{4^2}\cdot\frac{4\cdot6}{5^2} + \cdots \right)


We find that everything cancels except the initial 12\displaystyle \frac{1}{2}

Therefore:   S=ln(12)\displaystyle \;S \:=\:\ln\left(\frac{1}{2}\right)



AHH so this is like a telescopic series. Thanks a lot!
 
Top