Hi guys!!!I have a question..How can I show that the function that has the following identities:
∙ f(x)=0 ,x∈R.
∙ f(0)=f(32).
∫0xf(32+t)f(32+x−t)f(t)f(x−t)=∫0xf2(32+t)f2(t)
is f(x)=c..??
That's what I did:
=>∫0xf(32+t)f(32+x−t)f(t)f(x−t)=∫0xf2(32+t)f2(t)
f(32+x)f(32)f(x)f(0)=f2(32+x)f2(x) .
Because f(0)=f(32)
f(32+x)f(x)=f2(32+x)f2(x)
=> f2(32+x)f(x)=f2(x)f(32+x)
=>f(32+x)=f(x) , f(x)=0
=>f(x)=c
Can I find the derivative ∫0xf(32+t)f(32+x−t)f(t)f(x−t)=∫0xf2(32+t)f2(t) without using any theorem??
Also,how can I prove that f(32+x)=f(x)=>f(x)=c??
I hope you can help me...Thanks in advance!
∙ f(x)=0 ,x∈R.
∙ f(0)=f(32).
∫0xf(32+t)f(32+x−t)f(t)f(x−t)=∫0xf2(32+t)f2(t)
is f(x)=c..??
That's what I did:
=>∫0xf(32+t)f(32+x−t)f(t)f(x−t)=∫0xf2(32+t)f2(t)
f(32+x)f(32)f(x)f(0)=f2(32+x)f2(x) .
Because f(0)=f(32)
f(32+x)f(x)=f2(32+x)f2(x)
=> f2(32+x)f(x)=f2(x)f(32+x)
=>f(32+x)=f(x) , f(x)=0
=>f(x)=c
Can I find the derivative ∫0xf(32+t)f(32+x−t)f(t)f(x−t)=∫0xf2(32+t)f2(t) without using any theorem??
Also,how can I prove that f(32+x)=f(x)=>f(x)=c??
I hope you can help me...Thanks in advance!