Geometry: find altitude of equi. triangle given side lengths

henryvmhs

New member
Joined
Nov 24, 2007
Messages
1
Question: What is the length of an altitude of an equilateral triangle with side lengths of 4 times the square root of 3?
 
Re: Geometry

henryvmhs said:
Question: What is the length of an altitude of an equilateral triangle with side lengths of 4 times the square root of 3?

equilateral triangle = all sides of same length & each angle is 60 degrees

Cut the triangle in half so that you have a smaller triangle composed of three sides: (1/2)(base), height, and 43\displaystyle 4\sqrt{3}
Now use right-angle trig methods to find the height:

The angle where the (1/2)(base), height, and 43\displaystyle 4\sqrt{3} meet is 60 degrees.

You can now say that Sin(60) = h43\displaystyle \frac{h}{4\sqrt{3}}

Solve for h

Cheers,
John
 
Re: Geometry

Hello, henryvmhs!

What is the length of an altitude of an equilateral triangle with side lengths of 43\displaystyle 4\sqrt{3} ?
= . . . . . . . . . . . . . .\displaystyle *
- . . . . . . . . . . . .     \displaystyle *\;*\;*
- . . . . . . . . . . .             \displaystyle *\;\;\;*\;\;\;*
- . . . . . . . . . .                         43\displaystyle *\;\;\;\;\;*\;\;\;\;\;*\;\;4\sqrt{3}
- . . . . . . . . .               h         \displaystyle *\;\;\;\;\;\;\;*\text{h}\,\,\,\;\;\;*
- . . . . . . . .                                     \displaystyle *\;\;\;\;\;\;\;\;\;*\;\;\;\;\;\;\;\;\;*
. . . . . . . .                                             \displaystyle *\;\;\;\;\;\;\;\;\;\;\;*\;\;\;\;\;\;\;\;\;\;\;*
. . . . . . .                   \displaystyle *\;*\;*\;*\;*\;*\;*\;*\;*\;*
. . . . . . . . . . . . . . . . . 23\displaystyle 2\sqrt{3}

. . . . .. . Use Pythagorus!

 
Top