Graphing Cosine Function: y=cos2πx

FritoTaco

New member
Joined
Nov 14, 2015
Messages
42
Standard Equation: y=Asin(B(xC))+D\displaystyle y = A sin(B(x - C))+D


  • A: amplitude is A
  • B: period is (2π)/|B|
  • C: phase shift is C/B
  • D: vertical shift is D

Problem: y=cos2πx\displaystyle y=cos2\pi x



My Work:

Amplitude: 1\displaystyle 1 (a value in front of cos)
Period: 2π2π\displaystyle \dfrac{2\pi}{2\pi} = 1\displaystyle 1
Phase Shift: cb\displaystyle \dfrac{c}{b} = 02π\displaystyle \dfrac{0}{2\pi} = 0\displaystyle 0
Vertical Shift: 0\displaystyle 0 (d value)
Count: 1411\displaystyle \dfrac{1}{4}\cdot\dfrac{1}{1} (Formula for Count: 14period\displaystyle \dfrac{1}{4}\cdot period)


x\displaystyle xy=cosine2πx\displaystyle y=cosine2\pi x
0\displaystyle 0cos2π(0)=cos0=1\displaystyle cos2\pi(0) = cos0 = 1
1/4\displaystyle 1/4cos2π(1/4)=?\displaystyle cos2\pi(1/4)= ?
1/2\displaystyle 1/2cos2π(1/2)=?\displaystyle cos2\pi(1/2)= ?
3/4\displaystyle 3/4cos2π(3/4)=?\displaystyle cos2\pi(3/4)= ?
1\displaystyle 1cos2π(1)=?\displaystyle cos2\pi(1) = ?



How do I calculate 1/4 and the rest? The first one is easy because you multiply 120\displaystyle \dfrac{1}{2}\cdot0 = cos0\displaystyle cos0 and on the Unit Circle that's at point (1,0) and cosine = x so the value equals to 1. If I do the next row, I have 12π\displaystyle \dfrac{1}{2}\cdot\pi = 1.57. cos1.57 is not on the unit circle, or if it is I can't calculate it. What do you do in these situations? Thanks.
Also, if you're wondering how I get my x\displaystyle x values in the table, the count is 14\displaystyle \dfrac{1}{4} and you usually start with the phase shift, which is 0\displaystyle 0. So 0+14=14\displaystyle 0+\dfrac{1}{4}=\dfrac{1}{4}, then, 14+14=12\displaystyle \dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}, then, 14+12=34\displaystyle \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4} and so on. So I need easly values so I can make a graph for my final step.
 
Last edited:
Standard Equation: y=Asin(B(xC))+D\displaystyle y = A sin(B(x - C))+D


  • A: amplitude is A
  • B: period is (2π)/|B|
  • C: phase shift is C/B
  • D: vertical shift is D

Problem: y=cos2πx\displaystyle y=cos2\pi x

My Work:

Amplitude: 1\displaystyle 1 (a value in front of cos)

Period: 2π2π\displaystyle \dfrac{2\pi}{2\pi}
...which equals "1".

Phase Shift: cb\displaystyle \dfrac{c}{b} = 02π\displaystyle \dfrac{0}{2\pi} = 0\displaystyle 0

Vertical Shift: 0\displaystyle 0 (d value)

Count: 1411\displaystyle \dfrac{1}{4}\cdot\dfrac{1}{1} (Formula for Count: 14b\displaystyle \dfrac{1}{4}\cdot |b|}
x\displaystyle xy=cosine2πx\displaystyle y=cosine2\pi x
0\displaystyle 0cos2π(0)=cos0=1\displaystyle cos2\pi(0) = cos0 = 1
1/4\displaystyle 1/4cos2π(1/4)=?\displaystyle cos2\pi(1/4)= ?
1/2\displaystyle 1/2cos2π(1/2)=?\displaystyle cos2\pi(1/2)= ?
3/4\displaystyle 3/4cos2π(3/4)=?\displaystyle cos2\pi(3/4)= ?
1\displaystyle 1cos2π(1)=?\displaystyle cos2\pi(1) = ?
Simplify the arguments:

y=cos(2πx)\displaystyle y\, =\, \cos(2\pi x)
cos(2π(14))=cos(π2)=1\displaystyle \cos\left(2\pi\,\left(\frac{1}{4}\right)\right)\, = \,\cos\left(\frac{\pi}{2}\right)\, =\, 1
cos(2π(12))=cos(π)=?\displaystyle \cos\left(2\pi\, \left(\frac{1}{2}\right)\right)\,=\,\cos(\pi)\, =\, ?
cos(2π(34))=cos(3π2)=?\displaystyle \cos\left(2\pi\,\left(\frac{3}{4}\right)\right)\,=\, \cos\left(\frac{3\pi}{2}\right)\, =\, ?
cos(2π(1))=cos(2π)=?\displaystyle \cos(2\pi(1))\,=\, \cos(2\pi)\, =\, ?

Then complete the table by using the unit-circle values you've memorized.

How do I calculate 1/4 and the rest? The first one is easy because you multiply 120\displaystyle \dfrac{1}{2}\cdot0 = cos0\displaystyle cos0 and on the Unit Circle that's at point (1,0) and cosine = x so the value equals to 1. If I do the next row, I have 12π\displaystyle \dfrac{1}{2}\cdot\pi = 1.57. cos1.57 is not on the unit circle...
Yes, it is. Try using the exact values, rather than decimal approximations. ;-)
 
x\displaystyle xy=cosine2πx\displaystyle y=cosine2\pi x
0\displaystyle 0cos2π(0)=cos0=1\displaystyle cos2\pi(0) = cos0 = 1
1/4\displaystyle 1/4cos2π(1/4)=2π4=cosπ2=0\displaystyle cos2\pi(1/4)= \dfrac{2\pi}{4}=cos\dfrac{\pi}{2}=0
1/2\displaystyle 1/2cos2π(1/2)=2π2=cosπ=1\displaystyle cos2\pi(1/2)= \dfrac{2\pi}{2}=cos\pi=-1
3/4\displaystyle 3/4cos2π(3/4)=6π4=cos3π2=0\displaystyle cos2\pi(3/4)= \dfrac{6\pi}{4}=cos\dfrac{3\pi}{2}=0
1\displaystyle 1cos2π(1)=cos2π=1\displaystyle cos2\pi(1) = cos2\pi=1




Oh, I forgot to simplify the period.

Also, I was trying to use the calculator to get a value for cosine, but I just needed to simplify! I see, thank you, that makes sense.

One question though, when I go another value beyond 1, it will be 5/4. So when plugging it in, I get: cos2π1(5π4)=10π4=5π2\displaystyle cos\dfrac{2\pi}{1}\cdot(\dfrac{5\pi}{4})=\dfrac{10\pi}{4}=\dfrac{5\pi}{2}. Do I subtract π\displaystyle \pi from it to get an easier value? So, 5π2π1=5π22π2=cos3π2=0\displaystyle \dfrac{5\pi}{2}-\dfrac{\pi}{1}=\dfrac{5\pi}{2}-\dfrac{2\pi}{2}=cos\dfrac{3\pi}{2}= 0? Thanks.

Another thing, I fixed the count formula, it's 14period\displaystyle \dfrac{1}{4}\cdot period. Luckily the period was the same as the b value so it didn't change anything.
 
Last edited:
Standard Equation: [FONT=MathJax_Math]y[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]A[/FONT][FONT=MathJax_Math]s[/FONT][FONT=MathJax_Math]i[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]B[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Math]C[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]D[/FONT]y=Asin(B(x−C))+D



  • A: amplitude is A
  • B: period is (2π)/|B|
  • C: phase shift is C/B
  • D: vertical shift is D

An important detail:

If y = A sin (B(x-C)) + D then the phase shift is C.

If y = A sin (Bx - C) + D then the phase shift is C/B.

(It won't affect your current problem because C=0 anyway, but it will in other problems.)
 
x\displaystyle xy=cosine2πx\displaystyle y=cosine2\pi x
0\displaystyle 0cos2π(0)=cos0=1\displaystyle cos2\pi(0) = cos0 = 1
1/4\displaystyle 1/4cos2π(1/4)=2π4=cosπ2=0\displaystyle cos2\pi(1/4)= \dfrac{2\pi}{4}=cos\dfrac{\pi}{2}=0
1/2\displaystyle 1/2cos2π(1/2)=2π2=cosπ=1\displaystyle cos2\pi(1/2)= \dfrac{2\pi}{2}=cos\pi=-1
3/4\displaystyle 3/4cos2π(3/4)=6π4=cos3π2=0\displaystyle cos2\pi(3/4)= \dfrac{6\pi}{4}=cos\dfrac{3\pi}{2}=0
1\displaystyle 1cos2π(1)=cos2π=1\displaystyle cos2\pi(1) = cos2\pi=1




















Oh, I forgot to simplify the period.

Also, I was trying to use the calculator to get a value for cosine, but I just needed to simplify! I see, thank you, that makes sense.

One question though, when I go another value beyond 1, it will be 5/4. So when plugging it in, I get: cos2π1(5π4)=10π4=5π2\displaystyle cos\dfrac{2\pi}{1}\cdot(\dfrac{5\pi}{4})=\dfrac{10\pi}{4}=\dfrac{5\pi}{2}. Do I subtract π\displaystyle \pi from it to get an easier value? So, 5π2π1=5π22π2=cos3π2=0\displaystyle \dfrac{5\pi}{2}-\dfrac{\pi}{1}=\dfrac{5\pi}{2}-\dfrac{2\pi}{2}=cos\dfrac{3\pi}{2}= 0? Thanks

No. You need to subtract 2π\displaystyle 2\pi from it, not to get an "easier value" but to get a coterminal angle.

Another thing, I fixed the count formula, it's 14period\displaystyle \dfrac{1}{4}\cdot period. Luckily the period was the same as the b value so it didn't change anything.
see comments in red
 
x\displaystyle xy=cos(2πx)\displaystyle y\,=\,\cos(2\pi x)
0\displaystyle 0cos(2π(0))=cos(0)=1\displaystyle \cos(2\pi(0)) \,=\, \cos(0)\, =\, 1
14\displaystyle \dfrac{1}{4}cos(2π(14))=cos(π2)=0\displaystyle \cos\left(2\pi\,\left(\frac{1}{4}\right)\right)\, = \,\cos\left(\frac{\pi}{2}\right)\, =\, 0
12\displaystyle \dfrac{1}{2}cos(2π(12))=cos(π)=1\displaystyle \cos\left(2\pi\, \left(\frac{1}{2}\right)\right)\,=\,\cos(\pi)\, =\, -1
34\displaystyle \dfrac{3}{4}cos(2π(34))=cos(3π2)=0\displaystyle \cos\left(2\pi\,\left(\frac{3}{4}\right)\right)\,=\, \cos\left(\frac{3\pi}{2}\right)\, =\, 0
1\displaystyle 1cos(2π(1))=cos(2π)=1\displaystyle \cos(2\pi(1))\,=\, \cos(2\pi)\, =\, 1

Oh... I was trying to use the calculator to get a value for cosine, but I just needed to simplify! I see, thank you, that makes sense.

One question though, when I go another value beyond 1, it will be 5/4. So when plugging it in, I get:

. . . . .cos(2π15π4)=cos(10π4)=cos(5π2)\displaystyle \cos\left(\dfrac{2\pi}{1}\, \cdot\, \dfrac{5\pi}{4}\right)\,=\, \cos\left(\dfrac{10\pi}{4}\right)\, =\, \cos\left(\dfrac{5\pi}{2}\right)
I've re-inserted the "cos" (that is, the function) in the last line above. Graders often take points off for "magic" such as disappearing trig functions, especially on tests. Be careful!

Do I subtract π\displaystyle \pi from it to get an easier value?
Almost; the cycle for cosines repeats every two-pi, not every pi, units.

However, you have the right idea. This is how one uses the periodicity of the trig functions. Since the values of cosine repeat every cycle, find the first-cycle argument that corresponds to the later-cycle value you've been given.

So, 5π2π1=5π22π2=cos3π2=0\displaystyle \dfrac{5\pi}{2}-\dfrac{\pi}{1}=\dfrac{5\pi}{2}-\dfrac{2\pi}{2}=cos\dfrac{3\pi}{2}= 0? Thanks.
The value (5/2)pi is (1/2)pi more than 2pi, and is thus 1/4 of the way into the second cycle. (A cycle is 2pi.) The value (3/2)pi is 3/4 of the way through the first cycle. Why would the cosine have the same value at 1/4 of the way through the cycle as it has at 3/4 of the way through? ;)
 
Why would the cosine have the same value at 1/4 of the way through the cycle as it has at 3/4 of the way through? ;)

I know this question may be rhetorical, but because at 1/4, it's at 90 degrees making it (0,1) and cosine equal x so it's the same as 3/4's or 270 degrees which is (0, -1).
 
x\displaystyle xy=cosine2πx\displaystyle y=cosine2\pi x
0\displaystyle 0cos2π(0)=cos0=1\displaystyle cos2\pi(0) = cos0 = 1
1/4\displaystyle 1/4cos2π(1/4)=2π4=cosπ2=0\displaystyle cos2\pi(1/4)= \dfrac{2\pi}{4}=cos\dfrac{\pi}{2}=0
1/2\displaystyle 1/2cos2π(1/2)=2π2=cosπ=1\displaystyle cos2\pi(1/2)= \dfrac{2\pi}{2}=cos\pi=-1
3/4\displaystyle 3/4cos2π(3/4)=6π4=cos3π2=0\displaystyle cos2\pi(3/4)= \dfrac{6\pi}{4}=cos\dfrac{3\pi}{2}=0
1\displaystyle 1cos2π(1)=cos2π=1\displaystyle cos2\pi(1) = cos2\pi=1
54\displaystyle \dfrac{5}{4}2π154=10π4=5π2=5π22π1=5π24π2=cosπ2=0\displaystyle \dfrac{2\pi}{1}\cdot\dfrac{5}{4}=\dfrac{10\pi}{4}=\dfrac{5\pi}{2}=\dfrac{5\pi}{2}-\dfrac{2\pi }{1}=\dfrac{5\pi}{2}-\dfrac{4\pi}{2}=cos\dfrac{\pi}{2}=0
3/2\displaystyle 3/22π132=6π2=cos3π=1\displaystyle \dfrac{2\pi}{1}\cdot\dfrac{3}{2}=\dfrac{6\pi}{2}=cos3\pi=-1
7/4\displaystyle 7/42π174=14π4=7π2=7π22π1=7π24π2=cos3π2=0\displaystyle \dfrac{2\pi}{1}\cdot\dfrac{7}{4}=\dfrac{14\pi}{4}=\dfrac{7\pi}{2}=\dfrac{7\pi}{2}-\dfrac{2\pi}{1}=\dfrac{7\pi}{2}-\dfrac{4\pi}{2}=cos\dfrac{3\pi}{2}=0
2\displaystyle 22π12π1=cos4π=1\displaystyle \dfrac{2\pi}{1}\cdot\dfrac{2\pi}{1}=cos4\pi=1

So would this be right if I added more points beyond 1?
 
x\displaystyle xy=cosine2πx\displaystyle y=cosine2\pi x
0\displaystyle 0cos2π(0)=cos0=1\displaystyle cos2\pi(0) = cos0 = 1
1/4\displaystyle 1/4cos2π(1/4)=2π4=cosπ2=0\displaystyle cos2\pi(1/4)= \dfrac{2\pi}{4}=cos\dfrac{\pi}{2}=0
1/2\displaystyle 1/2cos2π(1/2)=2π2=cosπ=1\displaystyle cos2\pi(1/2)= \dfrac{2\pi}{2}=cos\pi=-1
3/4\displaystyle 3/4cos2π(3/4)=6π4=cos3π2=0\displaystyle cos2\pi(3/4)= \dfrac{6\pi}{4}=cos\dfrac{3\pi}{2}=0
1\displaystyle 1cos2π(1)=cos2π=1\displaystyle cos2\pi(1) = cos2\pi=1
54\displaystyle \dfrac{5}{4}2π154=10π4=5π2=5π22π1=5π24π2=cosπ2=0\displaystyle \dfrac{2\pi}{1}\cdot\dfrac{5}{4}=\dfrac{10\pi}{4}=\dfrac{5\pi}{2}=\dfrac{5\pi}{2}-\dfrac{2\pi }{1}=\dfrac{5\pi}{2}-\dfrac{4\pi}{2}=cos\dfrac{\pi}{2}=0
3/2\displaystyle 3/22π132=6π2=cos3π=1\displaystyle \dfrac{2\pi}{1}\cdot\dfrac{3}{2}=\dfrac{6\pi}{2}=cos3\pi=-1
7/4\displaystyle 7/42π174=14π4=7π2=7π22π1=7π24π2=cos3π2=0\displaystyle \dfrac{2\pi}{1}\cdot\dfrac{7}{4}=\dfrac{14\pi}{4}=\dfrac{7\pi}{2}=\dfrac{7\pi}{2}-\dfrac{2\pi}{1}=\dfrac{7\pi}{2}-\dfrac{4\pi}{2}=cos\dfrac{3\pi}{2}=0
2\displaystyle 22π12π1=cos4π=1\displaystyle \dfrac{2\pi}{1}\cdot\dfrac{2\pi}{1}=cos4\pi=1

So would this be right if I added more points beyond 1?
Erm... Would what be right? I mean, you are aware that trig functions repeat forever, right? ;)
 
Top