let \(\displaystyle R\subseteq \mathds{N}^{\mathds{N}}\times\mathds{N}^{\mathds{N}} \)the following relation:
R={(f,g):eachisatisfiesf(i)<=g(i)}
for each\(\displaystyle i\in\mathds{N}\) let\(\displaystyle \mathds{N}_{i}\subseteq\mathds{N} \) be the following group:
\(\displaystyle \mathds{N}_{i}=\{0,1,...,i\}\)
and let \(\displaystyle R_{i}=R\cap(\mathds{N}_{i}^{\mathds{N}}x\mathds{N}_{i}^{\mathds{N}})\)
What is the Cardinality ofR0 and R1?
prove\disprove:
a. for each \(\displaystyle i<=j\;\; R_{i}\circR_{j}=R_{j}\)
b. for each \(\displaystyle i<=j \;\;R_{j}\circR_{i}=R_{i}\)
R={(f,g):eachisatisfiesf(i)<=g(i)}
for each\(\displaystyle i\in\mathds{N}\) let\(\displaystyle \mathds{N}_{i}\subseteq\mathds{N} \) be the following group:
\(\displaystyle \mathds{N}_{i}=\{0,1,...,i\}\)
and let \(\displaystyle R_{i}=R\cap(\mathds{N}_{i}^{\mathds{N}}x\mathds{N}_{i}^{\mathds{N}})\)
What is the Cardinality ofR0 and R1?
prove\disprove:
a. for each \(\displaystyle i<=j\;\; R_{i}\circR_{j}=R_{j}\)
b. for each \(\displaystyle i<=j \;\;R_{j}\circR_{i}=R_{i}\)