help me with this trig problem

ryan882

New member
Joined
Aug 27, 2013
Messages
8
By writing cos x in terms of 1/2x, find an alternative expression for,
1-cosx
1+cosx

:confused::confused:
 
Use double-angle identities for cosine, since:

cos(x)=cos(2(12x))\displaystyle \cos(x)=\cos\left(2\left(\dfrac{1}{2}x \right) \right)
 
Hello, ryan882!

\(\displaystyle \text{By writing }\,\cos x\text{ in terms of }\frac{x}{2},\,\text{ find an alternative expression for: }\,
\dfrac{1-\cos x}{1+\cos x}\)

Use these two identities:

. . sin2 ⁣x2=1cosx21cosx=2sin2 ⁣x2\displaystyle \sin^2\!\frac{x}{2} \:=\:\dfrac{1-\cos x}{2} \quad\Rightarrow\quad 1 - \cos x \:=\:2\sin^2\!\frac{x}{2}
. . cos2 ⁣x2=1+cosx21+cosx=2cos2 ⁣x2\displaystyle \cos^2\!\frac{x}{2} \:=\: \dfrac{1 + \cos x}{2} \quad\Rightarrow\quad 1 + \cos x \:=\:2\cos^2\!\frac{x}{2}


Then: 1cosx1+cosx=2sin2 ⁣x22cos2 ⁣x2=sin2 ⁣x2cos2 ⁣x2=(sinx2cosx2)2=tan2 ⁣x2\displaystyle \text{Then: }\:\dfrac{1-\cos x}{1+\cos x} \:=\:\dfrac{2\sin^2\!\frac{x}{2}}{2\cos^2\!\frac{x}{2}} \:=\:\dfrac{\sin^2\!\frac{x}{2}}{\cos^2\!\frac{x}{2}} \:=\:\left(\dfrac{\sin\frac{x}{2}}{\cos\frac{x}{2}}\right)^2 \:=\:\tan^2\!\frac{x}{2}
 
Hello, ryan882!


Use these two identities:

. . sin2 ⁣x2=1cosx21cosx=2sin2 ⁣x2\displaystyle \sin^2\!\frac{x}{2} \:=\:\dfrac{1-\cos x}{2} \quad\Rightarrow\quad 1 - \cos x \:=\:2\sin^2\!\frac{x}{2}
. . cos2 ⁣x2=1+cosx21+cosx=2cos2 ⁣x2\displaystyle \cos^2\!\frac{x}{2} \:=\: \dfrac{1 + \cos x}{2} \quad\Rightarrow\quad 1 + \cos x \:=\:2\cos^2\!\frac{x}{2}


Then: 1cosx1+cosx=2sin2 ⁣x22cos2 ⁣x2=sin2 ⁣x2cos2 ⁣x2=(sinx2cosx2)2=tan2 ⁣x2\displaystyle \text{Then: }\:\dfrac{1-\cos x}{1+\cos x} \:=\:\dfrac{2\sin^2\!\frac{x}{2}}{2\cos^2\!\frac{x}{2}} \:=\:\dfrac{\sin^2\!\frac{x}{2}}{\cos^2\!\frac{x}{2}} \:=\:\left(\dfrac{\sin\frac{x}{2}}{\cos\frac{x}{2}}\right)^2 \:=\:\tan^2\!\frac{x}{2}

Thanks alot
 
Top