\(\displaystyle \text{By writing }\,\cos x\text{ in terms of }\frac{x}{2},\,\text{ find an alternative expression for: }\,
\dfrac{1-\cos x}{1+\cos x}\)
Hello, ryan882!
Use these two identities:
. . sin22x=21−cosx⇒1−cosx=2sin22x
. . cos22x=21+cosx⇒1+cosx=2cos22x
Then: 1+cosx1−cosx=2cos22x2sin22x=cos22xsin22x=(cos2xsin2x)2=tan22x