help solve -2x^2 + 11x - 5 = 0

G

Guest

Guest
factoring quadractic equations:

-2x^2+11x-5=0

do i divide by a negative one or what number do i use?
 
The first thing you have to do is factor so once you have factor the equation set the factors to equal zero.You have to solve each factor


Hope it helps. :D
 
Divide through by -2..

2x2+11x5=0x2112x+52=0\displaystyle -2x^2 + 11x - 5 = 0 \Rightarrow x^2 - \frac{11}{2} x + \frac{5}{2} = 0 \\

Now complete the square:

1) divide -11/2 by 2 you get -11/4

2) square result from number 1.. 121/16

3) Add and subtract 121/16 from the original equation:
x2112x+52+1211612116=0\displaystyle x^2 - \frac{11}{2} x + \frac{5}{2} + \frac{121}{16} - \frac{121}{16} = 0

4) As a direct result, x2112x+12116\displaystyle x^2 - \frac{11}{2} x + \frac{121}{16} factors into: (x114)2\displaystyle (x - \frac{11}{4})^2

5) So, x2112x+52+1211612116=(x114)2+5212116=(x114)2+401612116=(x114)28116=0\displaystyle x^2 - \frac{11}{2} x + \frac{5}{2} + \frac{121}{16} - \frac{121}{16} = (x - \frac{11}{4})^2 + \frac{5}{2} - \frac{121}{16} = (x - \frac{11}{4})^2 + \frac{40}{16} - \frac{121}{16} = (x - \frac{11}{4})^2 - \frac{81}{16} = 0 \\

6) Finally, given (x2114)28116=0\displaystyle (x^2 - \frac{11}{4})^2 - \frac{81}{16} = 0 solve for x:
(x114)2=8116\displaystyle (x - \frac{11}{4})^2 = \frac{81}{16}
x114=+/8116\displaystyle x - \frac{11}{4} = \, +/- \, \sqrt{\frac{81}{16}}
x=114+/814\displaystyle x = \frac{11}{4} \, +/- \, \frac{\sqrt{81}}{4}
x=11  +/  94\displaystyle x = \frac{11\,\, +/- \,\, 9}{4}

x = 5 or x = 1/2

You could also use the quadratic equation, which in many cases will be easier. :)
 
Top