Help solving with Partial Fractions...

random88hero

New member
Joined
Nov 17, 2010
Messages
3
I have been working on this problem for two days now and still can't seem to come across the correct answer.

y' = 0.0011y(1900-y) , y(0) = 128

initially when I solved it regularly I ended up needing imaginary numbers because I needed e^(something) to come out negative, but I assumed that was incorrect

next I went on and tried partial fractions and came up with this...

dy (1/y + 1/(1900-y)) = 2.09 dx

moving along I had

ln(y) - ln(1900-y) = 2.09x + c

then

ln (y/(1900-y)) = 2.09x +c

here is where I come into some problems, when I try solving for c, and then y, i get some crazy decimal that are extremely large.... any help
 
I get C=44360800.007286\displaystyle C=\frac{443}{60800}\approx .007286

y=1900e209x100e209x100+1900C\displaystyle y=\Large\frac{1900e^{\frac{209x}{100}}}{e^{\frac{209x}{100}}+1900C}
 
Hello, random88hero!

dydx  =  0.0011y(1900y),    y(0)=128\displaystyle \frac{dy}{dx} \;=\;0.0011y(1900-y),\;\; y(0) = 128

Multiply by 10, ⁣000 ⁣:    10, ⁣000dydx  =  11y(1900y)10,000dyy(1900y)  =  11dx\displaystyle \text{Multiply by }10,\!000\!:\;\;10,\!000\frac{dy}{dx} \;=\;11y(1900-y) \quad\Rightarrow\quad 10,000\frac{dy}{y(1900-y)} \;=\;11\,dx


Partial Fractions:   1y(1900y)=Ay+B1900yA=11900,    B=11900\displaystyle \text{Partial Fractions: }\;\frac{1}{y(1900-y)} \:=\:\frac{A}{y} + \frac{B}{1900-y} \quad\Rightarrow\quad A = \frac{1}{1900},\;\;B = \frac{1}{1900}

. . Hence:   1y(1900y)  =  11900[1y+11900y]\displaystyle \text{Hence: }\;\frac{1}{y(1900-y)} \;=\;\frac{1}{1900}\left[\frac{1}{y} + \frac{1}{1900-y}\right]


We have:   10, ⁣00011900(1y+11900y)  =  11dx\displaystyle \text{We have: }\;10,\!000\cdot\frac{1}{1900}\left(\frac{1}{y} + \frac{1}{1900-y}\right) \;=\;11\,dx

Integrate:   10019(1y+11999y)dy  =  11dx10019[lny    ln1900y]  =  11x  +  C1\displaystyle \text{Integrate: }\;\tfrac{100}{19}\int\left(\frac{1}{y} + \frac{1}{1999-y}\right)dy \;=\;11\int dx \quad\Rightarrow\quad \tfrac{100}{19}\bigg[\ln|y|\; \;- \ln|1900-y|\bigg] \;=\;11x \;+\; C_1

. . lnyln1900y  =  209100x+C2lny1900y=209100x+C2\displaystyle \ln|y| - \ln|1900-y| \;=\;\tfrac{209}{100}x + C_2 \quad\Rightarrow\quad \ln\left|\frac{y}{1900-y}\right| \:=\:\tfrac{209}{100}x + C_2



When x=0,y=128\displaystyle \text{When }x = 0,\:y = 128

. . ln1281900128  =  209100(0)+CC=ln(1281772)  =  ln(32443)\displaystyle \ln\left|\frac{128}{1900-128}\right| \;=\;\tfrac{209}{100}(0) + C \quad\Rightarrow\quad C \:=\:\ln\left(\tfrac{128}{1772}\right) \;=\;\ln\left(\tfrac{32}{443}\right)


Hence, we have:   lny1900y  =  209100x+ln(32443)\displaystyle \text{Hence, we have: }\;\ln\left|\frac{y}{1900-y}\right| \;=\;\tfrac{209}{100}x + \ln\left(\tfrac{32}{443}\right)


If you want to solve for y\displaystyle y, go ahead . . . I'll wait in the car.

 
Top