help with verifying this problem

koolaidsman

New member
Joined
Oct 20, 2010
Messages
1
I'm horrible with trig identities and I'm stuck on this last problem.
It says to verify using identities

sin 4(theta) = cos(theta) * (4sin(theta) - 8sin^3(theta)

The obvious side to break down is the right side, but I have no clue how to go about doing it.
 
koolaidsman said:
I'm horrible with trig identities and I'm stuck on this last problem.
It says to verify using identities

sin 4(theta) = cos(theta) * (4sin(theta) - 8sin^3(theta)

The obvious side to break down is the right side, but I have no clue how to go about doing it.

Hi koolaidsman,

I started from the left and used

[1] sin4θ=sin(2(2θ))\displaystyle \\ \\ \sin 4\theta=\sin(2(2\theta))

[2] sin2θ=2sinθcosθ\displaystyle \\ \\ \sin 2\theta=2\sin\theta \cos\theta.

[3] cos2θ=12sin2θ\displaystyle \\ \\ \cos 2\theta=1-2\sin^2\theta.

sin4θ=\displaystyle \sin 4 \theta=

sin(2(2θ))=\displaystyle \sin (2(2\theta))=

2sin2θcos2θ=\displaystyle 2 \sin 2\theta \cos 2\theta=

2(2sinθcosθ)(12sin2θ)=\displaystyle 2(2 \sin \theta \cos \theta)(1-2\sin^2\theta)=

4sinθcosθ(12sin2θ)=\displaystyle 4 \sin \theta \cos \theta(1-2\sin^2 \theta)=

4sinθcosθ8sin3θcosθ=\displaystyle 4 \sin \theta \cos \theta-8 \sin^3 \theta \cos \theta=

cosθ(4sinθ8sin3θ)\displaystyle \boxed{\cos \theta (4 \sin \theta -8 \sin^3 \theta )}


 
Top