How to Integrate [ tan(x) + cot(x) ]^2 ?

mauriciohideki

New member
Joined
Jun 12, 2016
Messages
1
\[\int_{}^{}(\tan x + \cot x)^{2}dx\]
<script type="text/javascript" src="http://www.hostmath.com/Math/MathJax.js?config=OK"></script>
 
\[\int_{}^{}(\tan x + \cot x)^{2}dx\]
<script type="text/javascript" src="http://www.hostmath.com/Math/MathJax.js?config=OK"></script>

Do you know how to integrate:

\(\displaystyle \displaystyle{\int tan^2(\theta)d\theta}\)
 
Hints: \(\displaystyle \displaystyle \begin{align*} \tan^2{(x)} + 1 \equiv \sec^2{(x)} \end{align*}\) and \(\displaystyle \displaystyle \begin{align*} 1 + \cot^2{(x)} \equiv \csc^2{(x)} \end{align*}\). Which of these trigonometric squares have easy antiderivatives.

It would also help you to expand the whole expression out.
 
Top