how to integrate the area between a circle and the x axis

Oiler

New member
Joined
Apr 3, 2020
Messages
20
so far I have got to
[MATH](x-x_o)^2 +(y-y_o)^2=r^2[/MATH][MATH](y-y_o)^2=r^2 - (x-x_o)^2[/MATH][MATH]y-y_o=\sqrt{r^2-(x-x_o)^2}[/MATH][MATH]y=\sqrt{r^2 -(x-x_o)^2}+y_o[/MATH][MATH]\int_{x_1}^{x_2} \left(\sqrt{r^2 -(x-x_o)^2}+y_o\right)dx[/MATH]
but I cannot figure out how to solve for the anti derivative

[ wolfram misinterprets Mathjax, don’t know how to type it in a way it can understand, and symbolab spits out a monster ]
 
Your integrand is r2(xx0)2+y0\displaystyle \sqrt{r^2- (x- x_0)^2}+ y_0.
Of course y0\displaystyle y_0 is a constant and its integral is just y0(x1x0)\displaystyle y_0(x_1- x_0).

So you are really concerned with x0x1r2(xx0)2dx\displaystyle \int_{x_0}^{x_1}\sqrt{r^2- (x- x_0)^2}dx.

The first thing I would do is make the substitution z=xx0\displaystyle z= x- x_0. Then dx= dz, when x=x0\displaystyle x= x_0, z=x0x0=0\displaystyle z= x_0- x_0= 0 and when x=x1\displaystyle x= x_1, z=x1x0\displaystyle z= x_1- x_0 so the integral becomes
0x1x0r2z2dz\displaystyle \int_0^{x_1- x_0}\sqrt{r^2- z^2}dz.

You should recognize that as leading to a "trig substitution". sin2(θ)+cos2(θ)=1\displaystyle sin^2(\theta)+ cos^2(\theta)= 1 so
1sin2(θ)=cos2(θ)\displaystyle 1- sin^2(\theta)= cos^2(\theta) and 1sin2(θ)=cos(θ)\displaystyle \sqrt{1- sin^2(\theta)}= cos(\theta).

Let z=rsin(θ)\displaystyle z= rsin(\theta). Then dz=rcos(θ)dθ\displaystyle dz= rcos(\theta)d\theta and r2z2=r2r2sin2(θ)=r1sin2(θ)=rcos(θ)\displaystyle \sqrt{r^2- z^2}= \sqrt{r^2- r^2sin^2(\theta)}= r\sqrt{1- sin^2(\theta)}= r cos(\theta). When z=0\displaystyle z= 0, θ=0\displaystyle \theta= 0 and when z=x1x0\displaystyle z= x_1- x_0, θ=aarcsin(x1x0)\displaystyle \theta= aarcsin(x_1- x_0) so the integral is, finally,
0arcsin(x1x0)cos2(θ)dθ\displaystyle \int_0^{arcsin(x_1- x_0)} cos^2(\theta) d\theta.
 
so far I have got to
[MATH](x-x_o)^2 +(y-y_o)^2=r^2[/MATH][MATH](y-y_o)^2=r^2 - (x-x_o)^2[/MATH][MATH]y-y_o=\sqrt{r^2-(x-x_o)^2}[/MATH][MATH]y=\sqrt{r^2 -(x-x_o)^2}+y_o[/MATH][MATH]\int_{x_1}^{x_2} \left(\sqrt{r^2 -(x-x_o)^2}+y_o\right)dx[/MATH]
but I cannot figure out how to solve for the anti derivative

[ wolfram misinterprets Mathjax, don’t know how to type it in a way it can understand, and symbolab spits out a monster ]

Have you ever worked with parametric functions and integrals? The parametric equation for the circle is just x = cos t, y = sin t. Now you need to solve Integral f(x) dx, dx = x'(t) dt, so you need to solve Integral sint (cos'(t)) dt, which is much easier :)
 
Top