davidtrinh
New member
- Joined
- Dec 1, 2016
- Messages
- 10
I am going to write down a math problem below.
(ex) Without using double angle identities, simplify 2cos(3x)*sinx
my attempt:
2cos(3x)*sinx
=2cos(x+2x)*sinx
=2sinx*cosx*cos(2x)-2sinx*sinx*sin(2x)
=2sinx*cosx*cos(2x)-2(sinx)^2*sin(2x)
=2sinx*cosx*(cosx*cosx-sinx*sinx)-2sin(2x)+2(cosx)^2*sin(2x)
=2sinx*(cosx)^3-2(sinx)^3*cosx-2sin(2x)+2(cosx)^2*sin(2x)
My strategy makes the original expression very messy. I am really stuck. The answer is sin(4x)-sin(2x).
Can someone explain how to do the problem without double angle identities? Thanks a lot.
(ex) Without using double angle identities, simplify 2cos(3x)*sinx
my attempt:
2cos(3x)*sinx
=2cos(x+2x)*sinx
=2sinx*cosx*cos(2x)-2sinx*sinx*sin(2x)
=2sinx*cosx*cos(2x)-2(sinx)^2*sin(2x)
=2sinx*cosx*(cosx*cosx-sinx*sinx)-2sin(2x)+2(cosx)^2*sin(2x)
=2sinx*(cosx)^3-2(sinx)^3*cosx-2sin(2x)+2(cosx)^2*sin(2x)
My strategy makes the original expression very messy. I am really stuck. The answer is sin(4x)-sin(2x).
Can someone explain how to do the problem without double angle identities? Thanks a lot.